1	CoSTR
2	2025 International Liaison Committee on Resuscitation Consensus on Science With
3	Treatment Recommendations
4	Executive Summary
5	
6	Authors: Katherine M. Berg (Sr Editor), Janet E. Bray (Chair BLS), Therese Djarv
7	(Chair FA), Ian Drennan (Chair ALS), Robert Grief (Chair EIT), Helen Liley (Chair NLS),
8	Barney Scholefield (Chair PLS), Diane Atkins (SAC), Jestin Carlson (SAC), Allan de Caen
9	(SAC), Eric Lavonas (SAC), Andrew Lockey (SAC), William Montgomery (SAC), Laurie
10	Morrison (SAC), Theresa Olasveengen (SAC), Jack Rabi (SAC), Claudio Sandroni (SAC),
11	Georg Schmoelzer (SAC), Nici Singletary (SAC), Michelle Welsford (SAC), Joyce Yeung
12	(SAC), Jack Billi (ILCOR Officer), Farhan Bhanji (ILCOR Officer), Vinay Nadkarni
13	(ILCOR Officer), Robert Neumar (ILCOR Officer), Gavin Perkins (ILCOR Officer), Jeanette
14	Previdi (AHA), Raffi Escalante, Sungphil Chun, Tony Scott, David Stanton, Siddha SC
15	Chakra Rao, Federico Semeraro, Amber Hoover, Peter Morley (Co-Sr. Author), Jerry Nolan
16	(Co-Sr. Author)
17	Key words: International Liaison Committee on Resuscitation

1 INTRODUCTION

2 The International Liaison Committee on Resuscitation (ILCOR) was formed in 1992 3 with the goal of creating global consensus on evidence-based emergency cardiovascular care, 4 cardiopulmonary resuscitation (CPR), and first aid, providing a resource for regional councils 5 crafting clinical guidelines. ILCOR currently includes representatives from the American 6 Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of 7 Canada, the Australia and New Zealand Committee on Resuscitation, the Resuscitation 8 Council of Southern Africa, the InterAmerican Heart Foundation, the Resuscitation Council 9 of Asia, and the Indian Resuscitation Council Federation, also benefitting from a 10 collaboration with the International Federation of Red Cross and Red Crescent Societies. 11 ILCOR's vision is to save more lives globally through resuscitation, and the ILCOR mission 12 is to promote, disseminate, and advocate international implementation of evidence-informed 13 resuscitation and first aid, using transparent evaluation and consensus summary of scientific 14 data.

Resuscitation includes all responses necessary to treat sudden life-threatening events affecting the cardiovascular and respiratory systems, with a focus on sudden cardiac arrest. For newborns, there is also a focus on prevention of cardiac arrest by promoting initial lung aeration and other critical adaptations to extrauterine life. First aid is also included as it encompasses a wide range of treatment, including potentially lifesaving interventions that can be delivered by lay rescuers.

21 ILCOR work is divided into 6 task forces: Basic Life Support (BLS); Advanced Life

22 Support (ALS); Pediatric Life Support (PLS); Neonatal Life Support (NLS); Education,

23 Implementation, and Teams (EIT); and First Aid. This 2025 International Liaison Committee

24 on Resuscitation Consensus on Science With Treatment Recommendations (CoSTR) includes

25 separate publications from each of the 6 task forces, this Executive Summary, and a

26 publication detailing the evidence evaluation process and management of potential conflicts

1 of interest. The task force papers detail work completed in the past year. They also 2 summarize topics reviewed since 2020 to provide a comprehensive 5-year update. This 3 Executive Summary summarizes select topics each task force wanted to highlight as being of 4 particular interest. Not all relevant references are cited here, although studies are cited when 5 discussed individually; refer to each task force publication in this issue for details of each of the reviews and task force deliberations and citations for all individual studies included in the 6 7 reviews. The task force papers provide additional information on these and many other 8 important topics. Because the task force papers are also summaries of a large body of work 9 and must be concise, readers are directed to the full online versions and to published 10 systematic reviews (SysRevs) when available.

11 Selected Highlights Since 2020

12 Basic Life Support

13 A new recommendation suggests that CPR techniques do not need to be modified in 14 obese people. Dispatcher-assisted automated external defibrillator (AED) retrieval and use is 15 supported, while possible negative consequences are also discussed. The avoidance of locks, 16 or the use of clear instructions for unlocking cabinets, for public access AEDs is encouraged. 17 Prior recommendations on topics including use of a firm surface for CPR, resuscitation of a 18 drowning person, and pad size and placement for defibrillation have been updated. Head-up 19 CPR continues to be discouraged except in the context of research. The importance of 20 providing training in defibrillation of women, including pad placement around breast tissue, 21 is emphasized, and the task force states that repositioning a bra rather than removing it may 22 be adequate, as long as defibrillation pads are placed on bare skin.

23 Advanced Life Support

Recommendations for postcardiac arrest temperature control changed in 2022 a
normothermic target of ≤37.5° C is now suggested. Treatment with insulin and glucose is
newly suggested for cardiac arrest caused by hyperkalemia, while the evidence for calcium or

1 bicarbonate in cardiac arrest from hyperkalemia is insufficient to support a recommendation. 2 Several recommendations address prognostication of favorable neurological outcome after 3 cardiac arrest, adding to existing guidance on the prognostication of poor outcome. Double 4 sequential external defibrillation or vector change defibrillation are now suggested for 5 ventricular fibrillation refractory to 3 consecutive shocks. The task force continues to suggest 6 not routinely using mechanical CPR devices, while acknowledging their utility in specific 7 situations. Extracorporeal CPR is similarly not suggested for routine use but may be 8 considered in select patients when conventional CPR is failing, in settings where this can be 9 implemented. The intravenous route continues to be preferred instead of the intraosseous 10 route as the initial access attempt during CPR.

11 Pediatric Life Support

12 The PLS Task Force has added specific diastolic blood pressure targets during CPR 13 for infants <1 year and for children 1 to 18 years with invasive blood pressure monitoring in 14 place at the time of cardiac arrest. A good practice statement states that either a compression-15 first or ventilation-first approach for starting CPR in children is reasonable, with another 16 good practice statement instructing rescuers to start CPR for any unresponsive child not 17 breathing and without signs of life, without attempting a pulse check first. Several new 18 recommendations for the use of clinical exam, biomarkers, imaging, and 19 electroencephalography were created in 2023, with new recommendations for prediction of 20 poor neurological outcome updated in 2025.

21 Neonatal Life Support

The NLS Task Force provides updated recommendations for cord management for preterm and term infants that support deferring cord clamping for at least 60 seconds in vigorous infants of all gestational ages, and for all infants ≥28 weeks, milking of the intact umbilical cord in circumstances where deferred cord clamping is precluded. Support for supraglottic airway devices as an alternative to face mask ventilation or tracheal intubation 1 continues, and they are now also suggested during chest compressions, in a good practice 2 statement. While the recommendation continues to be that preterm infants have resuscitation 3 initiated with a fraction of inspired oxygen (FIO₂) of \geq 0.3 and term infants with 0.21, the 4 recommendation against starting resuscitation with an FIO₂ of 1.0 for term and late preterm 5 infants has been withdrawn.

6

Education, Implementation, and Teams

7 The EIT Task Force now suggests that prehospital critical care teams attend out-of-8 hospital cardiac arrest events where emergency medical services (EMS) systems have 9 sufficient resources. There is sufficient evidence that patient outcomes improve when a team 10 member has attended an accredited CPR course. Resuscitation training should be adapted to 11 the needs of special populations, and family presence during CPR helps cosurvivors cope 12 with the impact of the situation, but resuscitation teams and families need proper care when 13 families are present at these events. The use of feedback devices during training is strongly 14 recommended. Debriefing after clinical resuscitation and CPR coaching are helpful 15 interventions. In situ CPR training and gamified learning improves learning. Augmented 16 reality might support CPR training, but no evidence was found for virtual reality applications. 17 No new evidence was found on clinical decision rules to facilitate in-hospital decisions on 18 do-not-attempt resuscitation orders.

19 First Aid

The First Aid Task Force now suggests manual uterine massage immediately after birth in the first aid setting to prevent postpartum hemorrhage. For first aid providers trained in the use of supplemental oxygen, titration of oxygen to a peripheral blood oxygen saturation of 88% to 92% is suggested for patients who report a history of chronic obstructive pulmonary disease. For people assisting someone who is choking, the task force recommends an escalating strategy of encouraging cough and then using back slaps, and using abdominal thrusts if back slaps are ineffective. To improve the chances of successful replantation of an amputated or avulsed body part, the task force recommends wrapping the body part in a
 moist cloth and plastic bag and then cooling it.

3 BASIC LIFE SUPPORT

4 Head-Up CPR

5 Although head-up CPR (slight elevation of the head and torso of the patient while performing CPR) is not in widespread use, it has garnered significant attention over the past 6 7 several years and is used by some EMS systems for out-of-hospital cardiac arrest (OHCA). 8 The BLS Task Force conducted a SysRev of this topic in 2021, at which point a single pre-9 post study was identified.¹ In that study, outcomes when supine CPR—with a mechanical 10 CPR device—was standard practice were compared with outcomes after a new bundle was 11 implemented. This bundle included (1) applied oxygen but deferred positive-pressure 12 ventilation for several minutes, (2) a pit crew approach for rapid mechanical CPR device 13 placement, and (3) elevation of the patient's head and torso by approximately 20°. While that 14 study reported increased event survival with the head-up CPR bundle, there was no improvement in favorable neurological outcome at hospital discharge, and the task force 15 16 concluded that this practice should be used only in the context of research, including clinical 17 trials. In the 2025 SysRev, 2 more studies were identified, both of which compared patients in 18 a registry of those receiving head-up CPR with patients from past clinical trials in which supine CPR was used.^{2,3} One of these trials found no significant difference in return of 19 20 spontaneous circulation (ROSC), survival, or neurological outcome.² The other found no 21 improvement in ROSC, but more survival and favorable neurological outcome at hospital discharge with the head-up CPR bundle.³ The head-up CPR intervention uses an automated 22 23 device that gradually elevates the patient's head and torso during CPR. Based on the 24 inconsistent findings and the concern about bias in the available studies (pre-post studies, in 25 some cases with the supine CPR group having their event several years before), the

recommendation continues to be that this intervention be used only in the context of research
 until its effects are clarified.

3 Optimization of Dispatcher-Assisted Recognition, CPR, and Automated External

4 Defibrillator Retrieval and Use

5 Dispatchers play a vital role in resuscitation for OHCA, both in helping a caller 6 recognize that someone is in cardiac arrest and in coaching them to start CPR. ILCOR has not 7 previously reviewed how to optimize these key dispatcher roles, and this prompted the BLS 8 Task Force to undertake Scoping reviews (ScopRevs) on the topics of dispatcher-assisted 9 recognition of cardiac arrest, dispatcher-assisted CPR, and dispatcher-assisted AED retrieval 10 and use. The ScopRevs were initially done for the 2024 CoSTR summary^{4,5} and were updated 11 with evidence updates (EvUps) for 2025.

12 Dispatcher-Assisted Recognition of Cardiac Arrest

13 Evidence consists mostly of observational studies that document the percentage of 14 cardiac arrest cases that are recognized as such by dispatchers, and what factors are 15 associated with successful recognition. Determining whether a patient is breathing normally, 16 with agonal breathing being a key indicator of the likely presence of cardiac arrest, continues 17 to be a key challenge for dispatchers. Various strategies to determine if someone is breathing 18 normally have been evaluated (although not in randomized trials); thus far, none appear more 19 effective than the often-used 2-question strategy (ie, "Is the person conscious?" and "Are they 20 breathing normally?").⁶

21 Dispatcher-Assisted CPR

Dispatcher-assisted CPR instructions are currently recommended, but the most
effective way to do this is not known. Multiple strategies have been investigated to optimize
dispatcher-assisted CPR, but several of these (eg, metronome use, use of prerecorded
instructions, inclusion of instructions to undress the patient) have too few published studies to
support a recommendation. Studies focusing on simplifying the language used to coach CPR

(eg, "Push as hard as you can") and those using video calls to enable direct feedback on CPR
 performance found a suggestion of improvement in hand positioning and compression depth
 and rate.^{7,8}

4 Dispatcher-Assisted AED Retrieval and Use

5 Dispatcher-assisted AED retrieval and use have become more common, but the evidence consists mostly of observational and simulation studies. Findings are somewhat 6 7 inconsistent, with some reporting that rescuers are more likely to retrieve and use an AED if 8 dispatchers include instructions on retrieval or that dispatcher instructions helped rescuers use 9 AEDs properly, while other studies found that dispatcher instructions on AED use sometimes 10 confused rescuers and potentially delayed use. The task force decided to make good practice 11 statements on this topic in 2024 because of the need for guidance around this increasingly 12 common practice. The task force states that dispatchers should ask if an AED is present in the 13 immediate vicinity; if not, and there is more than 1 rescuer, they should offer instruction on 14 how to find the nearest one. They should also provide instructions on AED use once it is 15 present.9

16 **Drone AED Delivery**

The use of drones to deliver AEDs was first evaluated in a ScopRev^{10,11} for the 2023 17 18 CoSTR summary,^{12,13} and an EvUp was done for 2025. Several simulation studies and real-19 life feasibility studies have compared dispatched drones with a traditional EMS response. A 20 prospective observational study included in the 2025 EvUp found that in the minority of 211 21 suspected OHCA cases in which a drone was dispatched at the same time as the traditional 22 EMS response, a drone was successfully delivered 81% of the time, and the AED arrived earlier than EMS (by an average of 3 minutes) 67% of the time.¹⁴ These findings were similar 23 to a much smaller pilot study identified in the 2023 ScopRev.¹⁵ The BLS Task Force 24 25 concluded that there continues to be too little data to support a SysRev or good practice 26 statement.

1 **AED Accessibility: Locked Cabinets**

2 The BLS Task Force reviewed the effect of locking cabinets that hold public access 3 AEDs to ascertain if this delayed AED use in cases of OHCA, and to evaluate the actual 4 occurrence of AED theft or damage.¹⁶ Limited observational studies report that theft rates are 5 low (<2%) and do not differ significantly between locked and unlocked cabinets. Simulation studies suggest that retrieval of an AED takes longer when a cabinet is locked. The BLS Task 6 7 Force, therefore, made a good practice statement suggesting these cabinets not be locked. If 8 they are locked, then instructions to unlock them must be clearly visible. They also 9 emphasized that EMS should endeavor to return AEDs to the owner organization after use.¹⁷

10

Removal of Bra Before Defibrillation

11 The task force conducted a ScopRev on this topic for 2025 because bra removal for 12 defibrillation has not been reviewed previously and there is a lack of clarity on best practice.¹⁸ Some guidelines recommend bra removal for pad placement and defibrillation,¹⁹ 13 14 but this is not universal. Studies have also reported that women are less likely to receive CPR and defibrillation, and there is concern that reluctance to expose the female chest may be part 15 16 of the reason.^{20,21} The ScopRev identified very limited evidence from a single animal study 17 and 2 simulation studies. No reports of harm to patient, rescuer, or defibrillator from 18 defibrillation use with a bra in place were found, and the animal study using defibrillation with underwire in direct contact did not find any harm (abstract only).²² A simulation study 19 20 found that men were less likely to remove all clothing from female manikins than women were.²³ The task force issued good practice statements acknowledging that we don't know if 21 22 it is better to remove the bra before defibrillation but that pads should be adhered to bare 23 skin, and this can often be done with repositioning a bra rather than removing it. They also 24 emphasized that CPR and defibrillation training should include female manikins and should 25 address the topic of bra repositioning or removal.

1

Effectiveness of Ultraportable/Pocket AEDs

Ultraportable AEDs have become available, but there is a lack of evidence on how they perform in comparison with standard AEDs. A ScopRev of this new topic was initially included in the 2024 CoSTR summary.^{4,5} The ScopRev identified no studies evaluating the effectiveness of these ultraportable devices, and the task force concluded that there is an urgent need for research assessing their effectiveness because they are already being marketed and sold to the public.^{24,25}

8 **CPR in Obese People**

9 Obesity is increasing in prevalence globally, and whether the effects of obesity on 10 chest wall compliance and impedance necessitate alterations in standard CPR protocols has 11 not been reviewed. A ScopRev on this topic was, therefore, undertaken by the BLS Task Force for 2025, as a nodal review with involvement of the ALS, PLS, and EIT Task Forces.²⁶ 12 13 Observational studies in adults were inconsistent in finding any relationship between obesity 14 and cardiac arrest outcomes. Only 2 pediatric studies were found, and these both reported 15 worse outcomes in children with obesity compared with normal-weight children. There were 16 no studies investigating variations in CPR protocols in obese patients or differences in 17 rescuer outcomes such as injuries related to performance of resuscitation. The limited data, 18 with significant heterogeneity in definitions of obesity and in results, led the task force to 19 conclude that there is currently no reason to deviate from standard CPR protocols when 20 resuscitating obese patients.²⁷

21 ADVANCED LIFE SUPPORT

22 Mechanical CPR

23 Mechanical CPR devices have been available for many years. This topic was last 24 reviewed by ILCOR in 2015, at which time use of mechanical CPR was suggested only in 25 situations in which manual CPR was not feasible or compromised rescuer safety (eg, in a 26 procedural setting, prolonged resuscitation, for CPR during transport).^{28,29} Use of mechanical

1 CPR devices increased during the COVID-19 pandemic and has remained more common 2 than in prepandemic practice. This updated SysRev focused on randomized controlled trials 3 (RCTs) only and identified 5 new trials since the 2015 review.³⁰⁻³⁴ Unfortunately, the 4 heterogeneity of available trials (in type of device, inclusion criteria, timing of mechanical 5 CPR initiation, and variability in co-interventions) made meta-analyses inadvisable. However, most studies, including all large trials, have found no difference in outcomes 6 between mechanical and manual CPR.³⁵ Potential delays in initial defibrillation with 7 8 mechanical CPR use can be avoided by delaying setup of the device until after the first 9 rhythm assessment and shock, if indicated. While these devices continue to be useful and 10 reasonable alternatives for situations in which manual CPR is difficult or unsafe to continue, 11 the ALS Task Force highlights that there is no evidence that mechanical CPR is superior to 12 manual CPR.

13 Double Sequential External Defibrillation

14 Double sequential external defibrillation (DSED) was investigated in an RCT³⁶ published in 2022, and an updated SysRev was completed for the 2023 CoSTR summary.^{12,13} 15 16 In the cluster RCT, which included OHCA patients who remained in ventricular fibrillation 17 after 3 consecutive shocks, more patients survived to hospital discharge in the DSED group 18 compared with the standard defibrillation group (27.4% versus 11.2%; adjusted relative 19 risk, 2.21; 95% CI, 1.26, 3.88). Survival with favorable neurological outcome and ROSC 20 were also higher in the DSED group. A third group of patients were randomized to vector 21 change defibrillation, in which the pads were changed from the anterolateral orientation to an 22 anteroposterior orientation after 3 consecutive shocks. This group also had better survival to 23 hospital discharge, but ROSC and survival with favorable neurological outcome were not 24 significantly better compared with the standard defibrillation group.

This topic generated considerable discussion by the ALS Task Force. The trial
had significant limitations and, because no comparison was done between DSED and

1 vector change, no conclusions about one approach being superior to the other could be

2 made. Either a DSED or a vector change strategy were suggested as reasonable

3 considerations for refractory ventricular fibrillation arrest.³⁷

4 Intravenous Versus Intraosseous Route for Initial Access Attempt

5 Intraosseous access devices have become popular recently and are used in both the out-of-hospital and in-hospital settings. They are promoted for their ability to help a rescuer 6 7 gain vascular access quickly in emergencies such as cardiac arrest. The ALS Task Force 8 updated the ILCOR SysRev on this topic in response to publication of 3 RCTs comparing initial intravenous (IV) attempts with initial intraosseous attempts for OHCA.³⁸⁻⁴⁰ Meta-9 10 analysis of the 3 trials demonstrated no difference in survival or survival with favorable 11 neurological outcome or ROSC at any time. The odds of sustained ROSC, an outcome 12 reported in 2 of the RCTs, were slightly lower in the group randomized to initial intraosseous access (odds ratio, 0.89; 95% CI, 0.80–0.99).⁴¹ Treatment recommendations continue to 13 14 support IV as the initial route for access, with intraosseous as an alternative if IV access 15 cannot be obtained quickly. Task force discussions included concerns about the widespread 16 use of these devices, with the significantly higher cost compared with IVs and no evidence 17 for benefit.

18 Treatment of Hyperkalemia

19 Standard treatment of life-threatening arrhythmias in the setting of hyperkalemia 20 often involves administration of calcium, beta agonists, and high-dose insulin therapy, but the 21 ALS and PLS Task Forces questioned whether these treatments were evidence based and 22 completed a SysRev of studies assessing the effect of different treatments to lower potassium values acutely.^{42,43} Interventions studied in this nodal review included salbutamol, insulin and 23 24 glucose, insulin plus salbutamol, calcium, and sodium bicarbonate. Evidence identified was 25 limited, all studies were small, and all but one were in non-cardiac arrest patients. 26 Salbutamol and insulin plus glucose both appeared to lower potassium values. In a study of

1 non-cardiac arrest patients, calcium did not affect electrocardiogram changes, and in a 2 retrospective study of patients with cardiac arrest and hyperkalemia, absolute mortality was 3 higher in the group receiving calcium. The task force discussed the important lack of data in 4 the cardiac arrest population, and the lack of any evidence to support calcium for cardiac 5 arrest in the setting of hyperkalemia, although this is recommended in some guidelines.¹⁹ Recognizing the very low certainty of the evidence, the task force suggests insulin and 6 7 glucose, salbutamol (inhaled or IV) or the combination of these therapies for hyperkalemia 8 without cardiac arrest, and insulin and glucose for hyperkalemia with cardiac arrest. The 9 evidence for calcium was considered insufficient to support a recommendation for or against. 10 It is suggested that bicarbonate not be given in non-cardiac arrest patients with hyperkalemia, 11 and there is insufficient evidence to recommend for or against in cardiac arrest.

12 Mechanical Circulatory Support After ROSC

13 This topic was prioritized because the task force was aware of randomized trials of 14 mechanical circulatory support (MCS) for cardiogenic shock, some of which included large 15 subgroups of patients with post-cardiac arrest cardiogenic shock. Fourteen trials reported 16 survival outcomes and found no benefit from MCS for all cardiogenic shock patients included.⁴⁴⁻⁵⁷ A subgroup of post-cardiac arrest patients from 6 of the included 17 18 trials^{46,48,49,52,55,56} similarly found no difference in 30-day survival with the use of MCS 19 devices compared with standard care. One RCT included only patients with cardiogenic 20 shock after in-hospital cardiac arrest and, again, found no difference in survival with the use of MCS.⁴⁹ Trials also found no difference in favorable neurological outcome. Post-cardiac 21 22 arrest subgroup data were not available for neurological outcome. The lack of benefit led to a 23 treatment recommendation suggesting that MCS not be used routinely for post-cardiac arrest 24 cardiogenic shock, but the task force acknowledged that there may be groups of patients who 25 benefit from MCS. Limited subgroup data suggest those with a Glasgow Coma Scale score >8 at hospital arrival with infarct-related cardiogenic shock,⁴⁹ patients with ST-segment 26

myocardial infarction without prior resuscitation before arrival of EMS, and those with a
 short duration of cardiac arrest (<10 minutes) could be reasonable candiates.⁵⁸

3 PEDIATRIC LIFE SUPPORT

4 Prediction of Survival With Poor Neurological Outcome After Return of Circulation

5 Following Pediatric Cardiac Arrest

6 The task force conducted a 2-part SysRev on prognostication of neurological outcome 7 in children after cardiac arrest. Prognostication of good outcome was included in the 2023 CoSTR summary,^{12,13} and prognostication of poor outcome was included for 2025. For poor 8 9 outcome, the false-positive rate was required to be <1% (corresponding to a specificity of 10 99%) for a test to be considered precise and reliable enough, prioritizing avoiding 11 discontinuation of life-sustaining therapy in patients who could have had a good outcome. 12 Tools for prognostication were broken down into categories that were reviewed separately, 13 including biomarkers, clinical exam, neuroimaging, and electrophysiology testing. In all 14 categories, the importance of using multiple tests in combination when prognosticating 15 neurological outcome was emphasized.

16 Biomarkers

17 Limited evidence was from studies not primarily designed for testing biomarkers for 18 prognostication. Lactate was not found to be a reliable biomarker for poor outcome, so the 19 task force suggested not using it for this purpose, and the evidence for other biomarkers was 20 insufficient to support a recommendation.

21 Clinical Exam

Absence of the pupillary light reflex before 24 hours was not a reliable prognostic test. At 48 and 72 hours after return of circulation, the false-positive rate was <1% but 95% CIs were wide. Glasgow Coma Scale score, including the total score and the motor score, was also not a reliable predictor of outcome. The task force suggests not using pupillary light 1 response or Glasgow Coma Scale score at 24 hours, but that lack of pupillary light response

2 at 48 to 72 hours may be considered as part of multimodal prognostication of poor outcome.

3 Electroencephalogram

4 Evidence for electroencephalogram is limited by the few studies, small sample sizes, 5 and heterogeneity across studies, including in timing and methods of interpretation of electroencephalograms. Blinding was also rarely present. The presence of seizures on 6 7 electroencephalogram was not a reliable predictor of poor outcome. Absence of normal 8 background, sleep architecture or sleep spindles, and reactivity were also not reliable. Status 9 epilepticus, burst suppression, burst attenuation, or generalized periodic epileptiform 10 discharges between 4 to 72 hours and myoclonic status had much lower false-positive rates 11 and were considered moderately reliable tests. Somatosensory evoked potential (bilaterally 12 absent N20 waves) had a false-positive rate of 0%, but there was only 1 small study. The task 13 force suggested that status epilepticus or a background pattern of burst suppression, burst 14 attenuation, or generalized periodic epileptiform discharges could be useful as one part of 15 multimodal prognostication.

16 Imaging

Loss of gray-white matter differentiation on a head computed tomography scan at 24 hours and magnetic resonance imaging apparent diffusion coefficient threshold $<650 \times 10^{-6}$ mm²/s in $\ge 10\%$ of brain volume (indicating high ischemic burden), at a median of 4 days after return of circulation, were found to be moderately reliable tests. The task force suggested that these findings on a computed tomography scan within 24 hours or magnetic resonance imaging at 72 hours or more after return of circulation could be useful as one component of multimodal prognostication.

Airway, Breathing, Compressions Versus Compressions, Airway, Breathing: Order of Ventilation and Compression

3 Many adult algorithms now begin resuscitation with compression instead of airway 4 and ventilations. The task force undertook this SysRev as a nodal review with the BLS Task 5 Force because the merits of starting with ventilations in children were uncertain. This was last reviewed for the 2019 CoSTR summary.^{59,60} Only 5 manikin studies were identified. 6 7 Findings suggested that time to chest compressions was shorter with the compressions-8 airway-breathing approach, and chest compression fraction was higher. Time to ventilation 9 was about 6 seconds faster with the airway-breathing-compressions approach in one study. 10 Indirect evidence from before and after OHCA registry studies in adults suggests that 11 switching from the airway-breathing-circulation to the circulation-airway-breathing approach may increase rates of bystander CPR⁶¹ and improved patient outcomes.⁶¹⁻⁶³ Similar data on 12 13 in-hospital cardiac arrest show conflicting evidence for patient outcomes.^{64,65} One large 14 registry study from Japan demonstrated increased bystander CPR rates in children with bystander-witnessed OHCA after compression-only CPR was introduced.⁶⁶ The task force 15 concluded that there is insufficient evidence to make a recommendation about the optimal 16 17 order of resuscitation. Both airway-breathing-compressions and compressions-airway-18 breathing approaches are reasonable, and both compressions and ventilations are important 19 components of pediatric resuscitation.

20 Blood Pressure Monitoring and Targets During Pediatric In-Hospital Cardiac Arrest

21 When children have intra-arterial catheters in place, invasive hemodynamic data may 22 provide information about the quality of chest compressions during cardiac arrest.⁶⁷ In this 23 updated SysRev, 5 observational cohort studies were included.⁶⁸⁻⁷² Three were analyses of the 24 same cohort (Pediatric Intensive Care Quality of CPR study) but examined different 25 subpopulations or different outcomes.^{69,71,72} Two studies of children with in-hospital cardiac 26 arrest and arterial lines in place^{68,69} found that exposure to a diastolic blood pressure of ≥ 25 1 mm Hg for infants <1 year and ≥30 mm Hg for children ≥1 year for the first 10 minutes of 2 CPR was associated with obtaining ROSC, when compared with a lower diastolic blood 3 pressure. Using the same cutoffs, a single study found that the higher diastolic blood pressure 4 was associated with hospital survival in children with surgical cardiac disease (n=88) but not 5 in those with medical cardiac disease (n=24).⁷² Systolic blood pressure during CPR was not 6 found to be associated with outcomes.

7 While evidence is limited and of very low certainty, and arterial lines are used only in 8 high-resource settings, the task force concluded there was sufficient evidence to issue a weak 9 recommendation suggesting targeting an intra-arrest diastolic blood pressure of \geq 25 mm Hg 10 for infants <1 year and \geq 30 mm Hg for children 1 to 18 years with invasive blood pressure 11 monitoring in place at the time of cardiac arrest.

12 Pulse Check Accuracy in Children During Resuscitation

13 Guidelines recommend a manual pulse check during rhythm analyses to detect ROSC, 14 with different anatomical sites for different age groups.⁷³ With the increasing availability of 15 ultrasound and arterial lines, the PLS Task Force prioritized this topic and conducted the first SysRev, expanding on a previous EvUp in 2023.¹³ Three studies were identified, including 39 16 patients and 376 pulse checks.⁷⁴⁻⁷⁶ Two of these studies assessed clinicians' ability to 17 18 accurately palpate a pulse for children with left ventricular assist devices or on extracorporeal 19 membrane oxygenation but without cardiac arrest. Sensitivity of pulse checks ranged from 76% to 100% in those studies, and specificity 64% to 79%.^{74,75} In one of these studies,⁷⁵ only 20 21 39% (60/153) of participants decided on the presence of a pulse within 10 seconds, and 22 determining whether a pulse was present took a median of 18 seconds. The third study was a series of cases in which an ultrasound was used during pulse checks, and duration of pulse 23 checks was not reported.⁷⁶ The task force reinforced a prior recommendation stating that 24 25 pulse checks are not reliable. Based on the lack of evidence supporting it, a prior 26 recommendation to begin CPR unless a pulse is palpated within 10 seconds was withdrawn

and then replaced with a new good practice statement that rescuers should start CPR for any
 unresponsive child who is not breathing and does not have signs of life.

3 NEONATAL LIFE SUPPORT

4 Umbilical Cord Management

5 Since 2020, the NLS Task Force has reviewed the evidence for umbilical cord management for vigorous term and late-preterm infants (SysRev 2021, EvUp 2025),⁷⁷⁻⁷⁹ 6 preterm infants (SysRev 2021 and SysRev Adolopment 2024, EvUp 2025),^{4,5,77,78,80} and 7 8 nonvigorous term and late preterm infants (SysRev 2025). In 2021 and 2024, SysRevs found 9 that deferred cord clamping (for at least 60 seconds) reduced mortality and transfusion 10 requirements for preterm infants and reduced later iron deficiency and anemia for late 11 preterm and term infants. The 2024 SysRev for preterm infants incorporated adolopment to include the results of a large, comprehensive meta-analysis that used individual patient data,⁸¹ 12 13 enabling greater precision of estimates of outcomes than a study-level meta-analysis. 14 Members of the task force worked with the individual patient data study team to ensure that the study addressed ILCOR population, intervention, comparator, and outcome questions. 15 16 This review also concluded that for infants for whom deferred cord clamping was not feasible 17 for either infant or maternal reasons, umbilical cord milking was a reasonable option for improving hematologic outcomes in infants ≥ 28 weeks' gestation, though for infants ≤ 28 18 19 weeks' gestation, it should not be used because of increased risk of intraventricular 20 hemorrhage. Umbilical cord milking may reduce the occurrence of hypoxic ischemic 21 encephalopathy in nonvigorous, late preterm and term infants.

22 Together, these reviews suggest a simplified approach to clinical practice, where
23 deferred cord clamping ≥60 seconds is the preferred option for all infants who are vigorous at
24 birth, to prevent mortality in very preterm infants and to improve hematologic outcomes in
25 those who are more mature. There remain some cases in which deferred cord clamping is not
26 feasible, for maternal or infant reasons, including circumstances in which the baby remains

nonvigorous despite tactile stimulation. For those who are not vigorous but ≥28 weeks,
 milking the intact umbilical cord is now the suggested option to improve hematologic
 outcomes for all and to reduce hypoxic ischemic encephalopathy in late preterm and term
 infants. Other methods of umbilical cord management also deserve further research.

5 Supraglottic Airway Devices During Neonatal Resuscitation

6 For 2025, the NLS Task Force completed a ScopRev on the use of supraglottic 7 airways during chest compressions. EvUps were done on the topics of supraglottic airways as 8 an alternative to face-mask ventilation and as an alternative to tracheal intubation. Together, 9 these reviews support that supraglottic airway devices should be considered as an alternative 10 to face masks or tracheal tubes for providing positive-pressure ventilation, especially when an 11 infant's condition is not improving despite face-mask ventilation and where there is nobody 12 immediately available who can intubate, or where intubation is not successful (low- to very 13 low-certainty evidence for each comparison). The ScopRev supports that this should include 14 infants who are receiving chest compressions. Until recently, the devices available have only 15 been suitable for infants \geq 34 weeks' gestation and ,therefore, they are the only group 16 represented in clinical trials. However, newer devices may be suitable for smaller infants.

17 Oxygen Concentration for Commencing Resuscitation

18 Oxygen concentration to be used when commencing resuscitation was reviewed with 19 a SysRev for preterm infants for 2025, and an EvUp of studies on term infants was completed 20 for 2025. In 2019, when both topics were reviewed previously, the task force concluded that 21 an FIO₂ of 0.21 was preferrable for commencing resuscitation in term infants, or 0.21 to 0.3 22 for preterm infants <35 weeks' gestation. An individual patient network meta-analysis for 23 preterm infants <32 weeks' gestation (NetMotion) cast doubt on the previous review's findings, suggesting that a concentration of 0.9 to 1.0 resulted in the best survival.⁸² An 24 25 updated NLS Task Force SysRev, which evaluated all available RCTs in a study-level 26 analysis and considered the results of NetMotion by adolopment, concluded that all the

1 evidence relating to mortality was of very low certainty, that benefit or harm could not be excluded for any other critical or important outcome, and that current and future large 2 3 multicenter trials were needed to define the optimal oxygen concentration for commencing 4 resuscitation. Meanwhile the use of an FIO₂ \geq 0.30 is suggested for preterm infants, and 0.21 5 remains the recommendation for term infants, although the task force plans to update both reviews as further evidence becomes available. The task force has withdrawn the 6 7 recommendation against FIO₂ 1.0 for term infants, after concluding that contemporary 8 Grading of Recommendations Assessment, Development, and Evaluation would result in an 9 insufficient certainty of evidence for that recommendation.

10 Video Laryngoscopes

11 This 2025 SysRev found evidence that video laryngoscopes improve the intubation 12 success rate for both first attempts and overall, although most studies included mostly 13 inexperienced clinicians, and the benefits may be fewer in those who are already experienced 14 in intubation. The NLS Task Force suggests video laryngoscopes be used for initial intubation 15 attempts where resources allow, especially where less-experienced clinicians may be 16 intubating, although traditional laryngoscopes are more widely available and must be 17 available as a backup device.

18 EDUCATION, IMPLEMENTATION, AND TEAMS

19 Debriefing of Clinical Resuscitation Performance

Debriefing strategies are used widely to improve CPR team performance and optimize delivery of care. However, there are few data showing the effect on patient outcomes or whether there are negative aspects to debriefing (eg, cost, emotional impact on professionals). The topic was last reviewed in 2020, but this included a mixture of resuscitation and trauma studies.^{83,84} The EIT Task Force undertook a new SysRev on debriefing that included only resuscitation studies in adults, children, and neonates and that sought clinical and patient outcomes. Ten observational studies (6 in adults,⁸⁵⁻⁹⁰ 3 in neonates,⁹¹⁻⁹³ and 1 in children⁹⁴)

1 were identified, and these included a wide range of interventions: postresuscitation 2 debriefing⁸⁵; audiovisual feedback plus weekly postevent debriefings⁸⁶; short individual oral debriefing⁸⁷; hot or cold debriefings⁸⁸; weekly debriefing sessions with audiovisual feedback 3 during cardiac arrests⁸⁹; an after-training workshop with debriefing⁹¹; video-assisted, 4 5 performance-focused debriefings⁹³; positive-pressure ventilation refresher and performance debriefing⁹²; and postresuscitation interdisciplinary team debriefings.⁹⁴ Some studies showed 6 7 no effect following postresuscitation debriefing while others showed an association with 8 improvements in several outcomes, such as favorable neurological outcome, survival to 9 discharge, ROSC, chest compression depth, chest compression rate, chest compression 10 fraction, and adherence to guidelines. Given the lack of RCTs comparing debriefing with no 11 debriefing after CPR, the task force noted a serious risk of bias in these studies. There are 12 also no data on the cost-effectiveness of postevent debriefing or on the effect of postevent 13 debriefings in low-resource settings. Despite these limitations, the findings underpinned a 14 new treatment recommendation: We suggest performing postevent debriefing after adult, pediatric, and neonatal cardiac arrest in all settings (weak recommendation, very low-15

16 certainty evidence).

17 Prehospital Critical Care for OHCA

18 In many countries, prehospital critical care teams are being implemented as part of a tiered EMS response.⁹⁵⁻⁹⁷ The teams comprise specialists in the care of critically ill patients 19 requiring resuscitation,⁹⁸ and they have competencies in ALS beyond that of standard EMS 20 teams.⁹⁹ The EIT Task Force undertook a SysRev to determine the impact of prehospital 21 22 critical care teams on clinical outcomes among adults and children after OHCA. Fifteen observational studies were identified.⁹⁵⁻¹⁰⁹ Pooled results from these studies showed an 23 24 association between prehospital critical care teams and higher rates of ROSC, survival to 25 discharge, survival to 30 days, and favorable neurological outcome at 30 days. The EIT Task 26 Force recommended that prehospital critical care teams attend adults with nontraumatic

OHCA within EMS systems with sufficient resource infrastructure (weak recommendation, low-certainty evidence) and suggested that prehospital critical care teams attend children with OHCA within EMS systems with sufficient resource infrastructure (weak recommendation, very low-certainty evidence). Implementing prehospital critical care services will incur additional resources, training, and EMS infrastructure costs, which may not be feasible in some health care systems. The optimal composition of prehospital critical care teams has yet to be determined.

8

CPR Coaching During Adult and Pediatric Cardiac Arrest

9 It is well recognized that adherence to guidelines is poor during CPR. A resuscitation 10 team member whose primary responsibility is to provide real-time coaching on resuscitation 11 quality, known as a CPR Coach, may improve compliance with CPR guidelines. To 12 investigate this, the EIT Task Force undertook a SysRev focusing on coaching in which the 13 coach is an active resuscitation team member. Of the 7 studies identified, one investigated use of CPR Coaches in a clinical setting,¹¹⁰ and 6 were simulation studies—although 5 of these 14 15 were based on the same RCT.¹¹¹⁻¹¹⁶ In general, the use of a CPR Coach was associated with 16 improved CPR performance, and the EIT Task Force recommended considering the inclusion 17 of a CPR Coach as a member of the resuscitation team during cardiac arrest resuscitation in 18 settings with adequate staffing (weak recommendation, very low-certainty evidence). The 19 effect of CPR Coaches in the setting of real cardiac arrests and their effect on patient survival 20 remains unknown.

21 CPR Feedback Device Use in Resuscitation Training

Use of CPR feedback devices during resuscitation skills training may improve CPR skill acquisition and retention, but the results of studies are inconsistent. The use of CPR feedback devices during resuscitation courses is increasing and, although this topic was reviewed in the 2020 CoSTR,^{83,84} the EIT Task Force considered it important to undertake an updated SysRev and included only RCTs. Twenty relevant studies were identified, 3

involving lay providers¹¹⁷⁻¹¹⁹ and 17 in health care professionals.¹²⁰⁻¹³⁶ Use of CPR feedback 1 2 devices improved compliance with current guidelines among health care professionals and 3 laypersons with respect to compression depth and compression rate. Use of CPR feedback 4 devices also improved chest recoil among health care professionals but not in laypersons. No 5 undesirable effects were detected in the review, feedback devices are well accepted, and their cost is relatively low. Based on these data, the EIT Task Force recommended the use of CPR 6 7 feedback devices during resuscitation training for health care professionals and lay providers 8 (strong recommendation, moderate-certainty evidence). The impact on patient outcomes of 9 improved CPR skills from training with feedback devices remains a major knowledge gap.

10 In Situ (at the Workplace) Simulation-Based CPR Training

11 Training using simulation is traditionally undertaken in the classroom setting, but 12 moving such training to clinical areas may improve fidelity and provide a better test of 13 organizational processes. The EIT Task Force completed a SysRev comparing in situ 14 simulation CPR training with traditional training. Nine studies were identified: 4 studies in adults,¹³⁷⁻¹⁴⁰ 3 in children,¹⁴¹⁻¹⁴³ and 2 in neonates.^{144,145} One prospective observational study 15 16 with historical controls documented an association between the in-situ simulation period and 17 higher odds of survival to hospital discharge among children with cardiac arrest (odds ratio, 2.06; 95% CI, 1.02–4.25).¹⁴² One observational study reported a lower incidence of neonatal 18 19 asphyxia after a period of in-situ simulation training compared with a preintervention period of traditional training.¹⁴⁵ Three before-and-after observational studies^{138,141,142} documented 20 improvements in elements of clinical resuscitation performance following a period of in-situ 21 22 CPR training, eg, reduced time to starting chest compressions, and reduced delay to defibrillation. Four RCTs^{143,139,144,140} and 1 observational study¹³⁷ documented improvements 23 24 in resuscitation performance with in-situ simulation training compared with traditional 25 training. Based on these improvements across several outcomes, the EIT Task Force 26 recommended that in-situ simulation may be considered as an option for CPR training where resources are readily available (weak recommendation, very low-certainty evidence). The
 resources required for implementation of in-situ simulation training and its feasibility in low and middle-income countries are knowledge gaps.

4 FIRST AID

5 Foreign-Body Airway Obstruction

This topic was last reviewed for the 2020 CoSTR.^{146,147} An EvUp identified 17 new 6 7 studies since the last review. In a retrospective study of 709 patients, abdominal thrusts as a 8 first intervention was associated with lower odds of relief of the obstruction (odds ratio, 0.57; 9 95% CI, 0.39–0.62) and lower odds of survival to hospital discharge (odds ratio, 0.2; 95% CI, 0.07–0.59) compared with back blows as a first intervention.¹⁴⁸ Multiple publications were 10 11 identified that reported on the safety and possible efficacy of several different airway clearance devices.¹⁴⁹⁻¹⁵³ A registry study of 407 patients reported that bystanders attempted to 12 13 clear the airway obstruction in 54% of cases and were successful in 48% of these attempts. 14 Survival was significantly higher in patients for whom a bystander had attempted to clear the 15 obstruction.¹⁵⁴ The task force continues to suggest back slaps as the first strategy for foreign-16 body airway obstruction removal, followed by abdominal thrusts if back slaps are 17 unsuccessful.

18 Unintentional Injury From Laypersons Providing Chest Compressions to Patients Who 19 Are Not in Cardiac Arrest

Lay rescuers may be hesitant to begin CPR because of concern for injuring a person, especially if they are uncertain about whether the person is truly in cardiac arrest. This topic was last reviewed for the 2020 CoSTR.^{146,147,155} One new study was added to the 4 identified previously,¹⁵⁶⁻¹⁶⁰ and these 5 studies included a total of 1031 patients who received CPR but were not in cardiac arrest. Of these people, 7 (0.7%) sustained a physical injury attributed to CPR, and an additional 24 (2%) had symptoms such as chest pain or discomfort. Based on this low injury rate and the lifesaving potential of CPR, the task force made a strong 1 recommendation that lay rescuers start CPR in cases of presumed cardiac arrest without

2 concerns for causing injury.

3 External Uterine Massage for Prevention of Postpartum Hemorrhage

4 Postpartum hemorrhage is a major cause of global morbidity and mortality, 5 particularly in lower-resource settings where most birth attendants have limited professional health education and may be considered lay or first aid providers.¹⁶¹ Many international 6 7 guidelines and other knowledge syntheses recommend external uterine massage for the prevention and management of postpartum hemorrhage.¹⁶²⁻¹⁶⁹ This simple and safe 8 9 intervention may reduce morbidity and mortality, and the First Aid Task Force reviewed 10 evidence for its provision by lay or first aid providers specifically, without advanced training. A single RCT¹⁷⁰ was identified, including 127 women who had recently given birth in Kenya 11 12 and were advised to perform self-massage cued by an alarm every 15 minutes for the first 13 120 minutes after birth. The study reported better compliance with the intervention but a 14 nonsignificant difference in blood loss and blood transfusion. Given the safety of this 15 maneuver, the task force suggests manual uterine massage, including self-massage, to prevent 16 postpartum hemorrhage in the immediate postpartum period.

17 Preservation of Amputated Body Parts

18 The First Aid Task Force recognizes that the top priority when approaching a patient 19 with an amputated or avulsed body part is stopping the bleeding and resuscitating the patient. 20 Retrieval and preservation of the amputated body part should not be overlooked, however, so 21 that replantation can be attempted. This ScopRev identified evidence on methods of 22 preserving avulsed or amputated body parts to maximize the chance of successful 23 replantation. Most of the evidence came from case reports and case series, with some observational and experimental studies also identified.¹⁷¹ More distal amputated parts (eg, 24 25 digits) without skeletal muscle tolerate periods of ischemia without cold preservation up to 12 26 hours; cold preservation extends the tolerable ischemic time before successful replantation to

- 1 24 hours or more. Observational studies of major upper extremity amputations also support
- 2 cold preservation, which may extend tolerable ischemia time from approximately 6 to 12
- 3 hours. The task force good practice statements suggest retrieving the body part and
- 4 transporting it to the hospital as soon as possible and cooling it if feasible. This can be
- 5 accomplished by wrapping the part in a moist clean cloth or gauze and sealing it in a
- 6 watertight bag or container before cooling, avoiding freezing. A SysRev is planned.

7 **References**

- 81.Pepe PE, Scheppke KA, Antevy PM, Crowe RP, Millstone D, Coyle C, Prusansky C, Garay S,
Ellis R, Fowler RL, et al. Confirming the Clinical Safety and Feasibility of a Bundled10Methodology to Improve Cardiopulmonary Resuscitation Involving a Head-Up/Torso-Up11Chest Compression Technique. Crit Care Med. 2019;47:449-455. doi:
- 12 10.1097/CCM.000000000005608
- Moore JC, Pepe PE, Scheppke KA, Lick C, Duval S, Holley J, Salverda B, Jacobs M, Nystrom
 P, Quinn R, et al. Head and thorax elevation during cardiopulmonary resuscitation using
 circulatory adjuncts is associated with improved survival. *Resuscitation*. 2022;179:9-17. doi:
 10.1016/j.resuscitation.2022.07.039
- 173.Bachista KM, Moore JC, Labarere J, Crowe RP, Emanuelson LD, Lick CJ, Debaty GP, Holley18JE, Quinn RP, Scheppke KA, et al. Survival for Nonshockable Cardiac Arrests Treated With19Noninvasive Circulatory Adjuncts and Head/Thorax Elevation. Crit Care Med. 2024;52:170-20181. doi: 10.1097/CCM.00000000006055
- Greif R, Bray JE, Djarv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ, Scholefield
 BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary Resuscitation and
 Emergency Cardiovascular Care Science With Treatment Recommendations: Summary
 From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life
 Support; Education, Implementation, and Teams; and First Aid Task Forces. *Circulation.* 2024;150:e580-e687. doi: 10.1161/CIR.000000000001288
 Greif R, Bray JE, Djarv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ, Scholefield
 BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary Resuscitation and
- Greif R, Bray JE, Djarv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ, Scholefield
 BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary Resuscitation and
 Emergency Cardiovascular Care Science With Treatment Recommendations: Summary
 From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life
 Support; Education, Implementation, and Teams; and First Aid Task Forces. *Resuscitation*.
 2024;205:110414. doi: 10.1016/j.resuscitation.2024.110414
- 33 34 Malta Hansen CJG, A.; Dicker, B.; Dassanayake, V.; Vaillancourt, C.; Dainty, K.; Olasveengen, 6. T.; Bray, J.; on behalf of the International Liaison Committee on Resuscitation Basic Life 35 Support Task Force,;. Optimization of Dispatcher-Assisted Recognition of Out-of-Hospital 36 Cardiac Arrest: a BLS Task Force Synthesis of a Scoping Review. IConsensus on Science 37 with Treatment Recommendations [Internet] Brussels, Belgium: International Liaison 38 Committee on Resuscitation (ILCOR) Basic Life Support Task Force, 2024 January 8. 39 Available from: https://costr.ilcor.org/document/optimization-of-dispatcher-assisted-da-40 recognition-of-ohca-a-scoping-review-bls-2102-scr. 2024. Accessed March 13 2025.
- Jointy KN, Debaty G, Waddick J, Vaillancourt C, Malta Hansen C, Olasveengen T, Bray J,
 International Liaison Committee on Resuscitation Basic Life Support Task F. Interventions
 to optimize dispatcher-assisted CPR instructions: A scoping review. *Resusc Plus.* 2024;19:100715. doi: 10.1016/j.resplu.2024.100715
- Bainty KN DG, Vaillancourt C, Smyth M, Olasveengen T, Bray J on behalf of the
 International Liaison Committee on Resuscitation Basic Life Support Task Force.
 Interventions used with Dispatcher-assisted CPR: A scoping review. [Internet] Brussels,
 Belgium: International Liaison Committee on Resuscitation (ILCOR) Basic Life Support
 Task Force, 2024 Jan 8. <u>https://costr.ilcor.org/document/optimization-of-dispatcher-</u>
 assisted-cpr-instructions-a-scoping-review-bls-2113-scr. Accessed March 1 2025.

1 2 3	9.	Smith CMS, L.; Whiting, J.; Smyth, M.; Olasveengen, T.; Bray, J.; on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force.,;.
3 4		Dispatcher instructions for public-access AED retrieval and/or use. A scoping review.
5		Consensus on Science with Treatment Recommendations [Internet] Brussels, Belgium: International Liaison Committee on Resuscitation (ILCOR) Basic Life Support Task Force,
6		2024 January 8. <u>https://costr.ilcor.org/document/optimization-of-dispatcher-assisted-</u>
7		public-access-aed-retrieval-and-use-a-scoping-review-bls-2120, 2024. Accessed March 12
8		2025.
9	10.	Jakobsen LK, Kjærulf V, Bray J, Olasveengen TM, Folke F. Drones delivering automated
10		external defibrillators for out-of-hospital cardiac arrest: A scoping review. <i>Resuscitation</i>
11		<i>Plus.</i> 2025;21:100841. doi: <u>https://doi.org/10.1016/j.resplu.2024.100841</u>
12	11.	Kollander LF, F.; Bray, J.; on behalf of the International Liaison Committee on Resuscitation
13		Basic Life Support Task Force. Drone AEDs Task Force Synthesis of a Scoping Scoping
14		Review. <u>https://costr.ilcor.org/document/drone-aeds-bls-tf-scr</u> . 202 3 . Accessed 1/15/202 3 .
15	12.	Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M,
16		Scholefield BR, et al. 2023 International Consensus on Cardiopulmonary Resuscitation and
17		Emergency Cardiovascular Care Science With Treatment Recommendations: Summary
18		From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life
19 20		Support; Education, Implementation, and Teams; and First Aid Task Forces. <i>Circulation</i> .
20 21	1-	2023;148:e187-e280. doi: 10.1161/CIR.00000000000001179 Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M,
$\frac{21}{22}$	13,	Scholefield BR, et al. 2023 International Consensus on Cardiopulmonary Resuscitation and
$\frac{22}{23}$		Emergency Cardiovascular Care Science With Treatment Recommendations: Summary
22 23 24		From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life
25		Support; Education, Implementation, and Teams; and First Aid Task Forces. <i>Resuscitation</i> .
26		2024;195:109992. doi: 10.1016/j.resuscitation.2023.109992
27 28	14.	Schierbeck S, Nord A, Svensson L, Ringh M, Nordberg P, Hollenberg J, Lundgren P, Folke
28	,	F, Jonsson M, Forsberg S, et al. Drone delivery of automated external defibrillators
29		compared with ambulance arrival in real-life suspected out-of-hospital cardiac arrests: a
30		prospective observational study in Sweden. <i>Lancet Digit Health</i> . 2023;5:e862-e871. doi:
31		10.1016/\$2589-7500(23)00161-9
32	15.	Schierbeck S, Hollenberg J, Nord A, Svensson L, Nordberg P, Ringh M, Forsberg S,
33		Lundgren P, Axelsson C, Claesson A. Automated external defibrillators delivered by
34 35		drones to patients with suspected out-of-hospital cardiac arrest. <i>Eur Heart J.</i> 2022;43:1478-
35 36	16.	1487. doi: 10.1093/eurheartj/ehab498 Oonver L. Barking GD. Smith CM. Vaillancourt C. Olassicongrap TM. Reaver IF. Forces IRT. The
30 37	10,	Oonyu L, Perkins GD, Smith CM, Vaillancourt C, Olasveengen TM, Bray JE, Force IBT. The impact of locked cabinets for automated external defibrillators (AEDs) on cardiac arrest
38		and AED outcomes: A scoping review. <i>Resusc Plus.</i> 2024;20:100791. doi:
39		10.1016/j.resplu.2024.100791
40	17.	Bray J, Oonyu L, Perkins GD, Smith CM, Vaillancourt C, Olasveengen T; on behalf of the
41	<i>)</i> "	International Liaison Committee on Resuscitation BLS Life Support Task Force.
42		Accessibility of AEDs in locked cabinets: Consensus on Science With Treatment
43		Recommendations. <u>https://costr.ilcor.org/document/aed-accessibility-benefits-and-</u>
44		<u>harms-if-locked-aed-cabinets-scoping-review-bls-2123-tf-scr</u> . October 7, 2024. Updated
45		November 3, 2024. Accessed March 3, 2025.
46	18.	Nørskov AS, Considine J, Nehme Z, Olasveengen TM, Morrison LJ, Morley P, Bray JE.
47		Removal of bra for pad placement and defibrillation – a scoping review. <i>Resuscitation</i>
48		Plus. 2025;22:100885. doi: <u>https://doi.org/10.1016/j.resplu.2025.100885</u>
49 50	19.	Panchal AR, Bartos JA, Cabanas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ,
50 51		Kurz MC, Lavonas EJ, Morley PT, et al. Part 3: Adult Basic and Advanced Life Support: 2020
52		American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. <i>Circulation.</i> 2020;142:S 3 66-S468. doi:
53		10.1161/CIR.000000000000016
54	20.	Grunau B, Humphries K, Stenstrom R, Pennington S, Scheuermeyer F, van Diepen S, Awad
55		E, Al Assil R, Kawano T, Brooks S, et al. Public access defibrillators: Gender-based
56		inequities in access and application. <i>Resuscitation</i> . 2020;150:17-22. doi:
57		10.1016/j.resuscitation.2020.02.024
58	21.	Perman SM, Shelton SK, Knoepke C, Rappaport K, Matlock DD, Adelgais K, Havranek EP,
59		Daugherty SL. Public Perceptions on Why Women Receive Less Bystander

1 2 3 4	22.	Cardiopulmonary Resuscitation Than Men in Out-of-Hospital Cardiac Arrest. <i>Circulation.</i> 2019;139:1060-1068. doi: 10.1161/CIRCULATIONAHA.118.037692 Di Maio R, O'Hare P, Crawford P, McIntyre A, McCanny P, Torney H, Adgey J. Self- adhesive electrodes do not cause burning, arcing or reduced shock efficacy when placed
5 6 7	23.	on metal items. <i>Resuscitation.</i> 2015;96:11. doi: 10.1016/j.resuscitation.2015.09.026 Kramer CE, Wilkins MS, Davies JM, Caird JK, Hallihan GM. Does the sex of a simulated patient affect CPR? <i>Resuscitation.</i> 2015;86:82-87. doi:
8 9 10	24.	<u>https://doi.org/10.1016/j.resuscitation.2014.10.016</u> Debaty G, Perkins GD, Dainty KN, Norii T, Olasveengen TM, Bray JE, International Liaison Committee on Resuscitation Basic Life Support Task F. Effectiveness of ultraportable
11 12		automated external defibrillators: A scoping review. <i>Resusc Plus</i> . 2024;19:100739. doi: 10.1016/j.resplu.2024.100739
14	25,	Debaty GD, K.; Norii, T.; Perkins, G.D.; Olasveengen, T.; Bray, J.; on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force.
15		Effectiveness of ultra-portable or pocket automated external defibrillator Consensus on
16 17 18		Science with Treatment Recommendations [Internet] Brussels, Belgium: International Liaison Committee on Resuscitation (ILCOR) Basic Life Support Task Force, 2024 January 8. <u>https://costr.ilcor.org/document/effectiveness-of-ultra-portable-or-pocket-automated-</u>
19		<u>external-defibrillators-a-scoping-review-bls-2603-scr</u> . 2024.
20 21	26.	Considine J, Couper K, Greif R, Ong GY, Smyth MA, Ng KC, Kidd T, Olasveengen TM, Bray J, International Liaison Committee on Resuscitation Basic Life Support ALSPLS, et al.
22 23		Cardiopulmonary resuscitation in obese patients: A scoping review. <i>Resusc Plus.</i>
23 24	ð-	2024;20:100820. doi: 10.1016/j.resplu.2024.100820
25	27.	Considine JC, K,; Greif, R.; Ong, G.Y.K.; Smyth, M.A.; Ng, K.C.; Kidd, T.; Olasveengen, T.M.; Bray, J.; ,on behalf of the International Liaison Committee on Resuscitation (ILCOR) Basic
26		Life Support (BLS), Advanced Life Support (ALS), the Paediatric Life Support, and the
27		Education, Implementation and Team (EIT) Task Forces. Cardiopulmonary Resuscitation in
28		Obese Patients Task Force Synthesis of a Scoping Review.
29		https://costr.ilcor.org/document/bls-2720-cardiopulmonary-resuscitation-in-obese-
30		patients-bls-tf-scr. 2024.
31	28.	Callaway CW, Soar J, Aibiki M, Bottiger BW, Brooks SC, Deakin CD, Donnino MW, Drajer S,
32 33		Kloeck W, Morley PT, et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
34		Treatment Recommendations. <i>Circulation</i> . 2015;172:S84-145. doi:
35		10.1161/CIR.000000000000273
36	29.	Soar J, Callaway CW, Aibiki M, Bottiger BW, Brooks SC, Deakin CD, Donnino MW, Drajer S,
37 38		Kloeck W, Morley PT, et al. Part 4: Advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with
39		Treatment Recommendations. Resuscitation. 2015;95:e71-120. doi:
40		10.1016/j.resuscitation.2015.07.042
41	30.	Koster RW, Beenen LF, van der Boom EB, Spijkerboer AM, Tepaske R, van der Wal AC,
42 43		Beesems SG, Tijssen JG. Safety of mechanical chest compression devices AutoPulse and LUCAS in cardiac arrest: a randomized clinical trial for non-inferiority. <i>Eur Heart J.</i>
44		2017;38:3006-3013. doi: 10.1093/eurheartj/ehx318
45	31.	Gao C, Chen Y, Peng H, Chen Y, Zhuang Y, Zhou S. Clinical evaluation of the AutoPulse
46		automated chest compression device for out-of-hospital cardiac arrest in the northern
47		district of Shanghai, China. Arch Med Sci. 2016;12:563-570. doi: 10.5114/aoms.2016.59930
48 49	32.	Couper K, Quinn T, Booth K, Lall R, Devrell A, Orriss B, Regan S, Yeung J, Perkins GD.
50		Mechanical versus manual chest compressions in the treatment of in-hospital cardiac arrest patients in a non-shockable rhythm: A multi-centre feasibility randomised
51		controlled trial (COMPRESS-RCT). Resuscitation. 2021;158:228-235. doi:
52		10.1016/j.resuscitation.2020.09.033
53	33.	Anantharaman V, Ng BL, Ang SH, Lee CY, Leong SH, Ong ME, Chua SJ, Rabind AC, Anjali
54	×ر)ر	NB, Hao Y. Prompt use of mechanical cardiopulmonary resuscitation in out-of-hospital
55		cardiac arrest: the MECCA study report. <i>Singapore Med J.</i> 2017;58:424-431. doi:
56		10.11622/smedj.2017071
57	34.	Baloglu Kaya F, Acar N, Ozakin E, Canakci ME, Kuas C, Bilgin M. Comparison of manual and
58	J, 1	mechanical chest compression techniques using cerebral oximetry in witnessed cardiac
59		arrests at the emergency department: A prospective, randomized clinical study. Am J
60		Emerg Med. 2021;41:163-169. doi: 10.1016/j.ajem.2020.06.031

 $\ensuremath{\mathbb{C}}$ 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1 2 3 4 5 6	35°	Pocock H, Nicholson T, Szarpak L, Soar J, Berg KM; on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force. Mechanical CPR devices. <u>https://costr.ilcor.org/document/mechanical-cpr-devices-als-3002-tf-sr</u> . November 9,
4		2024. Updated November 13, 2024.
5	<u>3</u> 6.	Cheskes S, Verbeek PR, Drennan IR, McLeod SL, Turner L, Pinto R, Feldman M, Davis M,
6		Vaillancourt C, Morrison LJ, et al. Defibrillation Strategies for Refractory Ventricular
7		Fibrillation. <i>N Engl J Med</i> . 2022;387:1947-1956. doi: 10.1056/NEJM0a2207304
8	37!∘	Ohshimo S, Drennan I, Deakin CD, Soar J, Berg KM; on behalf of the International Liaison
9	J),	Committee on Resuscitation Advanced Life Support Task Force. Double sequence
10		defibrillation: Consensus on Science With Treatment Recommendations.
11		https://costr.ilcor.org/document/double-sequential-defibrillation-strategy-for-cardiac-
12		arrest-with-refractory-shockable-rhythm-als-tf-sr. March 5, 2023. Updated May 4, 2023.
13		Accessed March 3, 2025.
14	38.	Couper K, Ji C, Deakin CD, Fothergill RT, Nolan JP, Long JB, Mason JM, Michelet F, Norman
15	30.	C, Nwankwo H, et al. A Randomized Trial of Drug Route in Out-of-Hospital Cardiac Arrest.
16		
17		N Engel J Med. 2025;392:336-348. doi: 10.1056/NEJM0a2407780
18	39.	Ko YC, Lin HY, Huang EP, Lee AF, Hsieh MJ, Yang CW, Lee BC, Wang YC, Yang WS, Chien
		YC, et al. Intraosseous versus intravenous vascular access in upper extremity among adults
19		with out-of-hospital cardiac arrest: cluster randomised clinical trial (VICTOR trial). <i>BMJ</i> .
20		2024;386:e079878. doi: 10.1136/bmj-2024-079878
21	40.	Vallentin MF, Granfeldt A, Klitgaard TL, Mikkelsen S, Folke F, Christensen HC, Povlsen AL,
22		Petersen AH, Winther S, Frilund LW, et al. Intraosseous or Intravenous Vascular Access for
23		Out-of-Hospital Cardiac Arrest. N Engl J Med. 2025;392:349-360. doi: 10.1056/NEJM0a2407616
24	41.	Couper K, Andersen LW, Drennan IR, Grunau BE, Kudenchuk PJ, Lall R, Lavonas EJ, Perkins
25		GD, Vallentin MF, Granfeldt A, et al. Intraosseous and intravenous vascular access during
26		adult cardiac arrest: A systematic review and meta-analysis. <i>Resuscitation</i> . 2024:110481. doi:
27		10.1016/j.resuscitation.2024.110481
28	42.	Jessen MK, Andersen LW, Djakow J, Chong NK, Stankovic N, Staehr C, Vammen L, Petersen
29		AH, Johannsen CM, Eggertsen MA, et al. Pharmacological interventions for the acute
30		treatment of hyperkalaemia: A systematic review and meta-analysis. <i>Resuscitation</i> .
31		2025:110489. doi: 10.1016/j.resuscitation.2025.110489
32	43.	Granfeldt A, Holmberg M, Andersen LW, Ng KC, Jana Djakow; on behalf of the Advanced
33	<i>,</i> -	Life Support and Pediatric Life Support Task Forces. Pharmacological interventions for
34		the acute treatment of hyperkalemia: a systematic review.
35		https://costr.ilcor.org/document/pharmacological-interventions-for-the-acute-
36		<u>treatment-of-hyperkalemia-als-3403-tf-sr</u> . November 5, 2024. Accessed March 3, 2025.
37	44.	Banning AS, Sabate M, Orban M, Gracey J, Lopez-Sobrino T, Massberg S, Kastrati A,
38	<i>y y</i>	Bogaerts K, Adriaenssens T, Berry C, et al. Venoarterial extracorporeal membrane
39		oxygenation or standard care in patients with cardiogenic shock complicating acute
40		myocardial infarction: the multicentre, randomised EURO SHOCK trial. <i>EuroIntervention</i> .
41		2023;19:482-492. doi: 10.4244/EIJ-D-23-00204
42	45.	Bochaton T, Huot L, Elbaz M, Delmas C, Aissaoui N, Farhat F, Mewton N, Bonnefoy E,
43	1.0	investigators I-S. Mechanical circulatory support with the Impella(R) LP5.0 pump and an
44		intra-aortic balloon pump for cardiogenic shock in acute myocardial infarction: The
45		IMPELLA-STIC randomized study. Arch Cardiovasc Dis. 2020;113:237-243. doi:
46		10.1016/j.acvd.2019.10.005
47	46.	Brunner S, Guenther SPW, Lackermair K, Peterss S, Orban M, Boulesteix AL, Michel S,
48	7,01	Hausleiter J, Massberg S, Hagl C. Extracorporeal Life Support in Cardiogenic Shock
49		Complicating Acute Myocardial Infarction. J Am Coll Cardiol. 2019;73:2355-2357. doi:
50		10.1016/j.jacc.2019.02.044
51	47.	Burkhoff D, Cohen H, Brunckhorst C, O'Neill WW, TandemHeart Investigators G. A
52	4	randomized multicenter clinical study to evaluate the safety and efficacy of the
53		Tandomized muticenter current study to evaluate the safety and enteacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with
54		intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469
55		e461-468. doi: 10.1016/j.ahj.2006.05.031
56	48	Firdaus I, Yuniadi Y, Andriantoro H, Elfira Boom C, Harimurti K, Romdoni R, al. e. Early
57	48.	insertion of intra-aortic balloon pump after cardiac arrest on acute coronary syndrome
58		n n
50		patients: A randomized clinical trial. Cardiol Cardiovasc Med. 2019;03.

$\frac{1}{2}$	49.	Moller JE, Engstrom T, Jensen LO, Eiskjaer H, Mangner N, Polzin A, Schulze PC, Skurk C, Nordbeck P, Clemmensen P, et al. Microaxial Flow Pump or Standard Care in Infarct-
1 2 3 4 5 6	50.	Related Cardiogenic Shock. <i>N Engl J Med</i> . 2024;390:1382-1393. doi: 10.1056/NEJM0a2312572 Ohman EM, Nanas J, Stomel RJ, Leesar MA, Nielsen DW, O'Dea D, Rogers FJ, Harber D,
5		Hudson MP, Fraulo E, et al. Thrombolysis and counterpulsation to improve survival in
6 7		myocardial infarction complicated by hypotension and suspected cardiogenic shock or
7 8		heart failure: results of the TACTICS Trial. <i>J Thromb Thrombolysis</i> . 2005;19:33-39. doi: 10.1007/s11239-005-0938-0
9	51.	Ostadal P, Rokyta R, Karasek J, Kruger A, Vondrakova D, Janotka M, Naar J, Smalcova J,
10	J	Hubatova M, Hromadka M, et al. Extracorporeal Membrane Oxygenation in the Therapy of
11		Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. <i>Circulation</i> .
12		2023;147:454-464. doi: 10.1161/CIRCULATIONAHA.122.062949
13	52.	Ouweneel DM, Eriksen E, Sjauw KD, van Dongen IM, Hirsch A, Packer EJ, Vis MM,
14 15		Wykrzykowska JJ, Koch KT, Baan J, et al. Percutaneous Mechanical Circulatory Support
16		Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction. <i>J Am Coll Cardiol.</i> 2017;69:278-287. doi: 10.1016/j.jacc.2016.10.022
17	53.	Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, Dirschinger J, Kastrati A,
18	30*	Schomig A. A randomized clinical trial to evaluate the safety and efficacy of a
19		percutaneous left ventricular assist device versus intra-aortic balloon pumping for
20		treatment of cardiogenic shock caused by myocardial infarction. JAm Coll Cardiol.
21		2008;52:1584-1588. doi: 10.1016/j.jacc.2008.05.065
22	54×	Thiele H, Sick P, Boudriot E, Diederich KW, Hambrecht R, Niebauer J, Schuler G.
23 24		Randomized comparison of intra-aortic balloon support with a percutaneous left
25		ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. <i>Eur Heart J.</i> 2005;26:1276-1283. doi:
$\frac{26}{26}$		10.1093/eurheartj/ehit61
27	55.	Thiele H, Zeymer U, Akin I, Behnes M, Rassaf T, Mahabadi AA, Lehmann R, Eitel I, Graf T,
28	0.0	Seidler T, et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N Engl J
29		Med. 2023;389:1286-1297. doi: 10.1056/NEJM0a2307227
30	56.	Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, Richardt G,
31 32		Hennersdorf M, Empen K, Fuernau G, et al. Intraaortic balloon support for myocardial
32 33		infarction with cardiogenic shock. <i>N Engl J Med.</i> 2012;367:1287-1296. doi: 10.1056/NEJM0a1208410
34	57.	Prondzinsky R, Lemm H, Swyter M, Wegener N, Unverzagt S, Carter JM, Russ M, Schlitt A,
35	J))/*	Buerke U, Christoph A, et al. Intra-aortic balloon counterpulsation in patients with acute
36		myocardial infarction complicated by cardiogenic shock: the prospective, randomized
37		IABP SHOCK Trial for attenuation of multiorgan dysfunction syndrome. Crit Care Med.
38		2010;38:152-160. doi: 10.1097/CCM.0b013e3181b78671
39	58.	Thiele H, Moller JE, Henriques JPS, Bogerd M, Seyfarth M, Burkhoff D, Ostadal P, Rokyta R,
40 41		Belohlavek J, Massberg S, et al. Temporary mechanical circulatory support in infarct-
42		related cardiogenic shock: an individual patient data meta-analysis of randomised trials with 6-month follow-up. <i>Lancet</i> . 2024;404:1019-1028. doi: 10.1016/S0140-6736(24)01448-X
43	59×	Soar J, Maconochie I, Wyckoff MH, Olasveengen TM, Singletary EM, Greif R, Aickin R,
44	J. 7.	Bhanji F, Donnino MW, Mancini ME, et al. 2019 International Consensus on
45		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
46		Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
47		Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and
48		Teams; and First Aid Task Forces. <i>Circulation</i> . 2019;140:e826-e880. doi:
49 50	6.0	10.1161/CIR.0000000000000734
51	60.	Soar J, Maconochie I, Wyckoff MH, Olasveengen TM, Singletary EM, Greif R, Aickin R, Bhanji F, Donnino MW, Mancini ME, et al. 2019 International Consensus on
52		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
53		Treatment Recommendations. <i>Resuscitation</i> . 2019;145:95-150. doi:
54		10.1016/j.resuscitation.2019.10.016
55	61.	Bray JE, Deasy C, Walsh J, Bacon A, Currell A, Smith K. Changing EMS dispatcher CPR
56 57		instructions to 400 compressions before mouth-to-mouth improved bystander CPR rates.
57 58	60	Resuscitation. 2011;82:1393-1398. doi: 10.1016/j.resuscitation.2011.06.018
58 59	62.	Pasupula DK, Bhat A, Siddappa Malleshappa SK, Munir MB, Barakat A, Jain S, Wang NC, Saba S, Bhonsale A. Impact of Change in 2010 American Heart Association Cardiopulmonary
60		Resuscitation Guidelines on Survival After Out-of-Hospital Cardiac Arrest in the United
		ι. · · · · · · · · · · · · ·

$\frac{1}{2}$		States. Circulation: Arrhythmia and Electrophysiology. 2020;13:e007843. doi:
2 3 4 5 6 7	63.	10.1161/CIRCEP.119.007843 Garza AG, Gratton MC, Salomone JA, Lindholm D, McElroy J, Archer R. Improved patient
4	03,	survival using a modified resuscitation protocol for out-of-hospital cardiac arrest.
5		ه <i>Circulation</i> ، 2009;119:259 7- 2605. doi: 10.1161/circulationaha.108.815621
6	64.	Mallikethi-Reddy S, Briasoulis A, Akintoye E, Jagadeesh K, Brook RD, Rubenfire M, Afonso
7		L, Grines CL. Incidence and Survival After In-Hospital Cardiopulmonary Resuscitation in
8		Nonelderly Adults: US Experience, 2007 to 2012. Circ Cardiovasc Qual Outcomes. 2017;10. doi:
9	c.	10.1161/circoutcomes.116.003194
10	65.	Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, Chen WJ. Outcomes of adults
11 12		with in-hospital cardiac arrest after implementation of the 2010 resuscitation guidelines. <i>Int J Cardiol</i> . 2017;249:214-219. doi: 10.1016/j.ijcard.2017.09.008
13	66.	Goto Y, Funada A, Maeda T, Goto Y. Temporal trends in neurologically intact survival
14	-0-0%	after paediatric bystander-witnessed out-of-hospital cardiac arrest: A nationwide
15		population-based observational study. <i>Resusc Plus</i> . 2021;6:100104. doi:
16		10.1016/j.resplu.2021.100104
17	67.	Berg RA, Nadkarni VM, Clark AE, Moler F, Meert K, Harrison RE, Newth CJ, Sutton RM,
18		Wessel DL, Berger JT, et al. Incidence and Outcomes of Cardiopulmonary Resuscitation in
19		PICUs. Crit Care Med. 2016;44:798-808. doi: 10.1097/CCM.000000000001484
20	68.	Berg RA, Morgan RW, Reeder RW, Ahmed T, Bell MJ, Bishop R, Bochkoris M, Burns C,
21 22		Carcillo JA, Carpenter TC, et al. Diastolic Blood Pressure Threshold During Pediatric
23		Cardiopulmonary Resuscitation and Survival Outcomes: A Multicenter Validation Study. Crit Care Med. 2023;51:91-102. doi: 10.1097/CCM.0000000000005715
23	69.	Berg RA, Sutton RM, Reeder RW, Berger JT, Newth CJ, Carcillo JA, McQuillen PS, Meert
25	ung.	KL, Yates AR, Harrison RE, et al. Association Between Diastolic Blood Pressure During
26		Pediatric In-Hospital Cardiopulmonary Resuscitation and Survival. <i>Circulation</i> .
27		2018;137:1784-1795. doi: 10.1161/CIRCULATIONAHA.117.032270
28	70.	Kienzle MF, Morgan RW, Alvey JS, Reeder R, Berg RA, Nadkarni V, Topjian AA, Lasa JJ,
29		Raymond TT, Sutton RM, et al. Clinician-reported physiologic monitoring of
30		cardiopulmonary resuscitation quality during pediatric in-hospital cardiac arrest: A
31		propensity-weighted cohort study. <i>Resuscitation</i> . 2023;188:109807. doi:
32		10.1016/j.resuscitation.2023.109807
33	71.	Wolfe HA, Sutton RM, Reeder RW, Meert KL, Pollack MM, Yates AR, Berger JT, Newth CJ,
34 35		Carcillo JA, McQuillen PS, et al. Functional outcomes among survivors of pediatric in-
36		hospital cardiac arrest are associated with baseline neurologic and functional status, but not with diastolic blood pressure during CPR. <i>Resuscitation</i> . 2019;143:57-65. doi:
37		10.1016/j.resuscitation.2019.08.006
38	72.	Yates AR, Sutton RM, Reeder RW, Meert KL, Berger JT, Fernandez R, Wessel D, Newth CJ,
39	<u>)</u>	Carcillo JA, McQuillen PS, et al. Survival and Cardiopulmonary Resuscitation
40		Hemodynamics Following Cardiac Arrest in Children With Surgical Compared to Medical
41		Heart Disease. <i>Pediatr Crit Care Med</i> . 2019;20:1126-1136. doi: 10.1097/PCC.000000000002088
42	73.	Phillips B, Zideman D, Garcia-Castrillo L, Felix M, Shwarz-Schwierin V. European
43		Resuscitation Council Guidelines 2000 for Advanced Paediatric Life Support: A statement
44		from Paediatric Life Support Working Group and approved by the Executive Committee
45		of the European Resuscitation Coucil. <i>Resuscitation</i> . 2001;48:231-234. doi:
46 47	_ (https://doi.org/10.1016/S0300-9572(00)00381-6
48	74.	Tibballs J, Russell P. Reliability of pulse palpation by healthcare personnel to diagnose paediatric cardiac arrest. <i>Resuscitation</i> . 2009;80:61-64. doi: 10.1016/j.resuscitation.2008.10.002
49	75∘	Tibballs J, Weeranatna C. The influence of time on the accuracy of healthcare personnel to
50	×ر از ا	diagnose paediatric cardiac arrest by pulse palpation. <i>Resuscitation</i> . 2010;81:671-675. doi:
51		10.1016/j.resuscitation.2010.01.030
52	76.	Tsung JW, Blaivas M. Feasibility of correlating the pulse check with focused point-of-care
53		echocardiography during pediatric cardiac arrest: a case series. <i>Resuscitation</i> . 2008;77:264-
54		269. doi: 10.1016/j.resuscitation.2007.12.015
55	<i>77</i> .	Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji
56		F, Andersen LW, Avis SR, et al. 2021 International Consensus on Cardiopulmonary
57 58		Resuscitation and Emergency Cardiovascular Care Science With Treatment
58 59		Recommendations: Summary From the Basic Life Support; Advanced Life Support;
57		Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and

1		the COVID-19 Working Group. <i>Resuscitation</i> . 2021;169:229-311. doi:
2 3 4 5 6 7 8		10.1016/j.resuscitation.2021.10.040
3	78.	Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji
4 5		F, Andersen LW, Avis SR, et al. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment
6		Recommendations: Summary From the Basic Life Support; Advanced Life Support;
7		Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and
8		the COVID-19 Working Group. <i>Circulation</i> . 2022;145:e645-e721. doi:
9		10.1161/CIR.0000000000001017
10	79°	Gomersall J, Berber S, Middleton P, McDonald SJ, Niermeyer S, El-Naggar W, Davis PG,
11 12		Schmölzer GM, Ovelman C, Soll RF. Umbilical Cord Management at Term and Late Preterm
12	80.	Birth: A Meta-analysis. <i>Pediatrics.</i> 2021;147. doi: 10.1542/peds.2020-015404 Seidler AL, Libesman S, Hunter KE, Barba A, Aberoumand M, Williams JG, Shrestha N,
13	80×	Aagerup J, Sotiropoulos JX, Montgomery AA, et al. Short, medium, and long deferral of
15		umbilical cord clamping compared with umbilical cord milking and immediate clamping
16		at preterm birth: a systematic review and network meta-analysis with individual
17		participant data. <i>Lancet</i> . 2023;402:2223-2234. doi: 10.1016/s0140-6736(23)02469-8
18	81.	Seidler AL, Aberoumand M, Hunter KE, Barba A, Libesman S, Williams JG, Shrestha N,
19		Aagerup J, Sotiropoulos JX, Montgomery AA, et al. Deferred cord clamping, cord milking,
20 21		and immediate cord clamping at preterm birth: a systematic review and individual
$\frac{21}{22}$	82.	participant data meta-analysis. <i>Lancet</i> . 2023;402:2209-2222. doi: 10.1016/s0140-6736(23)02468-6 Sotiropoulos JX, Oei JL, Schmölzer GM, Libesman S, Hunter KE, Williams JG, Webster AC,
$\frac{22}{23}$	023	Vento M, Kapadia V, Rabi Y, et al. Initial Oxygen Concentration for the Resuscitation of
24		Infants Born at Less Than 32 Weeks' Gestation: A Systematic Review and Individual
25		Participant Data Network Meta-Analysis. <i>JAMA Pediatr</i> . 2024. doi:
26		10.1001/jamapediatrics.2024.1848
27	83,	Greif R, Bhanji F, Bigham BL, Bray J, Breckwoldt J, Cheng A, Duff JP, Gilfoyle E, Hsieh MJ,
28 29		Iwami T, et al. Education, Implementation, and Teams: 2020 International Consensus on
30		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. <i>Circulation.</i> 2020;142:S222-s283. doi:
31		10.1161/cir.00000000000896
32	84.	Greif R, Bhanji F, Bigham BL, Bray J, Breckwoldt J, Cheng A, Duff JP, Gilfoyle E, Hsieh MJ,
33	,	Iwami T, et al. Education, Implementation, and Teams: 2020 International Consensus on
34		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
35		Treatment Recommendations. <i>Resuscitation</i> . 2020;156:A188-A239. doi:
36 37	0-	10.1016/j.resuscitation.2020.09.014
38	85.	Bleijenberg E, Koster RW, de Vries H, Beesems SG. The impact of post-resuscitation feedback for paramedics on the quality of cardiopulmonary resuscitation. <i>Resuscitation</i> .
39		2017;110:1-5. doi: 10.1016/j.resuscitation.2016.08.034
40	86,	Couper K, Kimani PK, Abella BS, Chilwan M, Cooke MW, Davies RP, Field RA, Gao F,
41		Quinton S, Stallard N, et al. The System-Wide Effect of Real-Time Audiovisual Feedback
42		and Postevent Debriefing for In-Hospital Cardiac Arrest: The Cardiopulmonary
43		Resuscitation Quality Improvement Initiative. <i>Crit Care Med</i> . 2015;43:2321-2331. doi:
44 45	0	10.1097/CCM.000000000001202
45 46	87.	Couper K, Kimani PK, Davies RP, Baker A, Davies M, Husselbee N, Melody T, Griffiths F,
47		Perkins GD. An evaluation of three methods of in-hospital cardiac arrest educational debriefing: The cardiopulmonary resuscitation debriefing study. <i>Resuscitation</i> .
48		2016;105:130-137. doi: 10.1016/j.resuscitation.2016.05.005
49	88.	Couper K, Mason AJ, Gould D, Nolan JP, Soar J, Yeung J, Harrison D, Perkins GD. The
50		impact of resuscitation system factors on in-hospital cardiac arrest outcomes across UK
51		hospitals: An observational study. <i>Resuscitation.</i> 2020;151:166-172. doi:
52		10.1016/j.resuscitation.2020.04.006
53 54	89.	Edelson DP, Litzinger B, Arora V, Walsh D, Kim S, Lauderdale DS, Vanden Hoek TL, Becker
54 55		LB, Abella BS. Improving in-hospital cardiac arrest process and outcomes with
55 56		performance debriefing. <i>Archives of internal medicine.</i> 2008;168:1063-1069. doi: 10.1001/archinte.168.10.1063
57	90.	Malik AO, Nallamothu BK, Trumpower B, Kennedy M, Krein SL, Chinnakondepalli KM,
58	7	Hejjaji V, Chan PS. Association Between Hospital Debriefing Practices With Adherence to
59		Resuscitation Process Measures and Outcomes for In-Hospital Cardiac Arrest. <i>Circ</i>
60		<i>Cardiovasc Qual Outcomes</i> . 2020;13:e006695. doi: 10.1161/CIRCOUTCOMES.120.006695

1 2 3 4 5 6 7 8 Heydarzadeh MM, A.; Azizi, S.; Hamedi, A.; Alavi, SS. Impact of video-recorded debriefing 91. and neonatal resuscitation program workshops on short-term outcomes and quality of neonatal resuscitation. Iranian Journal of Neonatology. 2020;2020 Jun: 11(2). Skare C, Boldingh AM, Kramer-Johansen J, Calisch TE, Nakstad B, Nadkarni V, Olasveengen 92× TM, Niles DE. Video performance-debriefings and ventilation-refreshers improve quality of neonatal resuscitation. Resuscitation. 2018;132:140-146. doi: 10.1016/j.resuscitation.2018.07.013 Skare C, Calisch TE, Saeter E, Rajka T, Boldingh AM, Nakstad B, Niles DE, Kramer-Johansen 93. 9 J, Olasveengen TM. Implementation and effectiveness of a video-based debriefing 10 programme for neonatal resuscitation. Acta Anaesthesiol Scand. 2018;62:394-403. doi: 11 10.11111/aas.13050 12 Wolfe H, Zebuhr C, Topjian AA, Nishisaki A, Niles DE, Meaney PA, Boyle L, Giordano RT, 94. 13 Davis D, Priestley M, et al. Interdisciplinary ICU cardiac arrest debriefing improves 14 survival outcomes*. Crit Care Med. 2014;42:1688-1695. doi: 10.1097/CCM.000000000000227 15 Dickinson ET, Schneider RM, Verdile VP. The impact of prehospital physicians on out-of-95. 16 hospital nonasystolic cardiac arrest. Prehospital Emergency Care. 1997;1:132-135. doi: 17 10.1080/10903129708958805 18 Goto Y, Funada A, Goto Y. Impact of prehospital physician-led cardiopulmonary 96. 19 resuscitation on neurologically intact survival after out-of-hospital cardiac arrest: A 20 nationwide population-based observational study. *Resuscitation*. 2019;136:38-46. doi: 21 https://doi.org/10.1016/j.resuscitation.2018.11.014 22 23 Goto Y, Maeda T, Nakatsu-Goto Y. Neurological outcomes in patients transported to 97. hospital without a prehospital return of spontaneous circulation after cardiac arrest. 24 Critical Care. 2013;17:R274. doi: 10.1186/cc13121 25 Hatakeyama T, Kiguchi T, Sera T, Nachi S, Ochiai K, Kitamura T, Ogura S, Otomo Y, Iwami 98. 26 T. Physician's presence in pre-hospital setting improves one-month favorable neurological 27 survival after out-of-hospital cardiac arrest: A propensity score matching analysis of the 28 29 JAAM-OHCA Registry. Resuscitation. 2021;167:38-46. doi: https://doi.org/10.1016/j.resuscitation.2021.08.010 30 Nakajima S, Matsuyama T, Watanabe M, Komukai S, Kandori K, Okada A, Okada Y, <u>9</u>9. 31 Kitamura T, Ohta B. Prehospital Physician Presence for Patients With out-of-Hospital 32 33 Cardiac Arrest Undergoing Extracorporeal Cardiopulmonary Resuscitation: A Multicenter, Retrospective, Nationwide Observational Study in Japan (The JAAM-OHCA registry). 34 Current Problems in Cardiology. 2023;48:101600. doi: 35 https://doi.org/10.1016/j.cpcardiol.2023.101600 36 Barnard EBG, Sandbach DD, Nicholls TL, Wilson AW, Ercole A. Prehospital determinants of 100. 37 successful resuscitation after traumatic and non-traumatic out-of-hospital cardiac arrest. 38 Emergency Medicine Journal. 2019;36:333. doi: 10.1136/emermed-2018-208165 39 Bjornsson HM, Bjornsdottir GG, Olafsdottir H, Mogensen BA, Mogensen B, Thorgeirsson G. 101. 40 Effect of replacing ambulance physicians with paramedics on outcome of resuscitation for 41 prehospital cardiac arrest. European Journal of Emergency Medicine. 2021;28. 42 Bujak K, Nadolny K, Trzeciak P, Gałązkowski R, Ładny J, Gąsior M. Does the presence of 102. 43 physician-staffed emergency medical services improve the prognosis in out-of-hospital 44 cardiac arrest? A propensity score matching analysis. Polish Heart Journal (Kardiologia 45 Polska). 2022;80:685-692. doi: {} 46 Obara T, Yumoto T, Nojima T, Hongo T, Tsukahara K, Matsumoto N, Yorifuji T, Nakao A, 105. 47 Elmer J, Naito H. Association of Prehospital Physician Presence During Pediatric Out-of-48 Hospital Cardiac Arrest With Neurologic Outcomes. Pediatric Critical Care Medicine. 49 2023;24. 50 Olasveengen TM, Lund-Kordahl I, Steen PA, Sunde K. Out-of hospital advanced life 104. 51 support with or without a physician: Effects on quality of CPR and outcome. Resuscitation. 52 2009;80:1248-1252. doi: https://doi.org/10.1016/j.resuscitation.2009.07.018 53 Pemberton K, Franklin RC, Bosley E, Watt K. Pre-hospital predictors of long-term survival 105. 54 from out-of-hospital cardiac arrest. Australasian Emergency Care. 2023;26:184-192. doi: 55 https://doi.org/10.1016/j.auec.2022.10.006 56 106. Sato N, Matsuyama T, Akazawa K, Nakazawa K, Hirose Y. Benefits of adding a physician-57 staffed ambulance to bystander-witnessed out-of-hospital cardiac arrest: a community-58 based, observational study in Niigata, Japan. BMJ Open. 2019;9:e032967. doi: 10.1136/bmjopen-59 2019-032967

1 2 3 4 5 6 7 8 von Vopelius-Feldt J, Coulter A, Benger J. The impact of a pre-hospital critical care team 107. on survival from out-of-hospital cardiac arrest. Resuscitation. 2015;96:290-295. doi: https://doi.org/10.1016/j.resuscitation.2015.08.020 108. von Vopelius-Feldt J, Morris RW, Benger J. The effect of prehospital critical care on survival following out-of-hospital cardiac arrest: A prospective observational study. Resuscitation. 2020;146:178-187. doi: https://doi.org/10.1016/j.resuscitation.2019.08.008 Yasunaga H, Horiguchi H, Tanabe S, Akahane M, Ogawa T, Koike S, Imamura T. 100. Collaborative effects of bystander-initiated cardiopulmonary resuscitation and prehospital 9 advanced cardiac life support by physicians on survival of out-of-hospital cardiac arrest: a 10 nationwide population-based observational study. Critical Care. 2010;14:R199. doi: 11 10.1186/000310 12 Infinger AE, Vandeventer S, Studnek JR. Introduction of performance coaching during 110. 13 cardiopulmonary resuscitation improves compression depth and time to defibrillation in 14 out-of-hospital cardiac arrest. Resuscitation. 2014;85:1752-1758. doi: 15 10.1016/j.resuscitation.2014.09.016 16 Badke CM, Friedman ML, Harris ZL, McCarthy-Kowols M, Tran S. Impact of an untrained 1111. 17 CPR Coach in simulated pediatric cardiopulmonary arrest: A pilot study. Resuscitation 18 *plus.* 2020;4:100035-100035. doi: 10.1016/j.resplu.2020.100035 19 Buyck M, Shayan Y, Gravel J, Hunt EA, Cheng A, Levy A. CPR coaching during cardiac 112. 20 arrest improves adherence to PALS guidelines: a prospective, simulation-based trial. 21 Resuscitation Plus. 2021;5:100058-100058. doi: https://doi.org/10.1016/j.resplu.2020.100058 22 23 Jones KA, Jani KH, Jones GW, Nye ML, Duff JP, Cheng A, Lin Y, Davidson J, Chatfield J, 113. Tofil N, et al. Using natural language processing to compare task-specific verbal cues in 24 coached versus noncoached cardiac arrest teams during simulated pediatrics resuscitation. 25 AEM education and training. 2021;5:e10707-e10707. doi: 10.1002/aet2.10707 26 27 Kessler DO, Grabinski Z, Shepard LN, Jones SI, Lin Y, Duff J, Tofil NM, Cheng A. Influence 1114. of Cardiopulmonary Resuscitation Coaching on Interruptions in Chest Compressions 28 29 During Simulated Pediatric Cardiac Arrest. Pediatric Critical Care Medicine. 2021;22:345-353. doi: 10.1097/PCC.00000000002623 30 Tofil NM, Cheng A, Lin Y, Davidson J, Hunt EA, Chatfield J, MacKinnon L, Kessler D. Effect 115. 31 of a Cardiopulmonary Resuscitation Coach on Workload During Pediatric 32 33 34 35 Cardiopulmonary Arrest: A Multicenter, Simulation-Based Study. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2020;21:e274-e281. doi: 10.1097/PCC.00000000002275 36 Cheng A, Duff JP, Kessler D, Tofil NM, Davidson J, Lin Y, Chatfield J, Brown LL, Hunt EA. 116. 37 Optimizing CPR performance with CPR coaching for pediatric cardiac arrest: A 38 randomized simulation-based clinical trial. Resuscitation. 2018;132:33-40. doi: 39 10.1016/j.resuscitation.2018.08.021 40 Cortegiani A, Russotto V, Montalto F, Iozzo P, Meschis R, Pugliesi M, Mariano D, Benenati 117. 41 V, Raineri SM, Gregoretti C, et al. Use of a Real-Time Training Software (Laerdal QCPR(R)) 42 Compared to Instructor-Based Feedback for High-Quality Chest Compressions Acquisition 43 in Secondary School Students: A Randomized Trial. PLoS One. 2017;12:e0169591. doi: 44 10.1371/journal.pone.0169591 45 118. Kong SYJ, Song KJ, Shin SD, Ro YS, Myklebust H, Birkenes TS, Kim TH, Park KJ. Effect of 46 real-time feedback during cardiopulmonary resuscitation training on quality of 47 performances: A prospective cluster-randomized trial. Hong Kong Journal of Emergency 48 Medicine. 2020;27:187-196. doi: 10.1177/1024907918825016 49 Meng XY, You J, Dai LL, Yin XD, Xu JA, Wang JF. Efficacy of a Simplified Feedback Trainer 11Q. 50 for High-Quality Chest Compression Training: A Randomized Controlled Simulation 51 Study. Front Public Health. 2021;9:675487. doi: 10.3389/fpubh.2021.675487 52 120. Allan KS, Wong N, Aves T, Dorian P. The benefits of a simplified method for CPR training 53 of medical professionals: a randomized controlled study. *Resuscitation*. 2013;84:1119-1124. doi: 54 10.1016/j.resuscitation.2013.03.005 55 Ghaderi MS, Malekzadeh J, Mazloum S, Pourghaznein T. Comparison of real-time feedback 121. 56 and debriefing by video recording on basic life support skill in nursing students. BMC 57 Med Educ. 2023;23:62. doi: 10.1186/s12909-022-03951-1 58 Gonzalez-Santano D, Fernandez-Garcia D, Silvestre-Medina E, Remuinan-Rodriguez B, 122. 59 Rosell-Ortiz F, Gomez-Salgado J, Sobrido-Prieto M, Ordas-Campos B, Martinez-Isasi S. 60 Evaluation of Three Methods for CPR Training to Lifeguards: A Randomised Trial Using

1		Traditional Procedures and New Technologies. <i>Medicina (Kaunas)</i> . 2020; 5 6. doi:
2		10.3390/medicina56110577
3	123.	Jang TC, Ryoo HW, Moon S, Ahn JY, Lee DE, Lee WK, Kwak SG, Kim JH. Long-term benefits
4		of chest compression-only cardiopulmonary resuscitation training using real-time visual
5		feedback manikins: a randomized simulation study. <i>Clin Exp Emerg Med.</i> 2020;7:206-212. doi:
2 3 4 5 6		10,15441/ceem.20.022
7	124.	Jiang J, Yan J, Yao D, Xiao J, Chen R, Zhao Y, Jin X. Comparison of the effects of using
8		feedback devices for training or simulated cardiopulmonary arrest. J Cardiothorac Surg.
9		2024;19:159. doi: 10.1186/s13019-024-02669-z
10	125.	Kardong-Edgren SE, Oermann MH, Odom-Maryon T, Ha Y. Comparison of two
11	*-J*	instructional modalities for nursing student CPR skill acquisition. <i>Resuscitation</i> .
12		2010;81:1019-1024. doi: 10.1016/j.resuscitation.2010.04.022
13	126.	Katipoglu B, Madziala MA, Evrin T, Gawlowski P, Szarpak A, Dabrowska A, Bialka S, Ladny
14	120%	JR, Szarpak L, Konert A, et al. How should we teach cardiopulmonary resuscitation?
15		K K Y
16	10-	Randomized multi-center study. <i>Cardiol J.</i> 2021;28:439-445. doi: 10.5603/CJ.a2019.0092
17	127.	Labuschagne MJ, Arbee A, de Klerk C, de Vries E, de Waal T, Jhetam T, Piest B, Prins J, Uys
17		S, van Wyk R, et al. A comparison of the effectiveness of QCPR and conventional CPR
		training in final-year medical students at a South African university. Afr J Emerg Med.
19		2022;12:106-111. doi: 10.1016/j.afjem.2022.02.001
20	128.	Lee PH, Lai HY, Hsieh TC, Wu WR. Using real-time device-based visual feedback in CPR
21		recertification programs: A prospective randomised controlled study. Nurse Educ Today.
22		2023;124:105755. doi: 10.1016/j.nedt.2023.105755
23	129.	Lin Y, Cheng A, Grant VJ, Currie GR, Hecker KG. Improving CPR quality with distributed
24		practice and real-time feedback in pediatric healthcare providers - A randomized
25		controlled trial. <i>Resuscitation</i> . 2018;130:6-12. doi: 10.1016/j.resuscitation.2018.06.025
26	130.	Min MK, Yeom SR, Ryu JH, Kim YI, Park MR, Han SK, Lee SH, Park SW, Park SC.
27		Comparison between an instructor-led course and training using a voice advisory manikin
28		in initial cardiopulmonary resuscitation skill acquisition. <i>Clin Exp Emerg Med</i> . 2016;3:158-
29		164. doi: 10.15441/ceem.15.114
30	131.	Pavo N, Goliasch G, Nierscher FJ, Stumpf D, Haugk M, Breckwoldt J, Ruetzler K, Greif R,
31		Fischer H. Short structured feedback training is equivalent to a mechanical feedback
32		device in two-rescuer BLS: a randomised simulation study. Scand J Trauma Resusc Emerg
33		Med. 2016;24:70. doi: 10.1186/s13049-016-0265-9
34	132.	Spooner BB, Fallaha JF, Kocierz L, Smith CM, Smith SC, Perkins GD. An evaluation of
35		objective feedback in basic life support (BLS) training. <i>Resuscitation</i> . 2007;73:417-424. doi:
36		10.1016/j.resuscitation.2006.10.017
37	133.	Suet G, Blanie A, de Montblanc J, Roulleau P, Benhamou D. External Cardiac Massage
38	0.0	Training of Medical Students: A Randomized Comparison of Two Feedback Methods to
39		Standard Training. <i>J Emerg Med</i> . 2020;59:270-277. doi: 10.1016/j.jemermed.2020.04.058
40	134.	Sutton RM, Niles D, Meaney PA, Aplenc R, French B, Abella BS, Lengetti EL, Berg RA,
41	J, J	Helfaer MA, Nadkarni V. "Booster" training: evaluation of instructor-led bedside
42		cardiopulmonary resuscitation skill training and automated corrective feedback to
43		improve cardiopulmonary resuscitation compliance of Pediatric Basic Life Support
44		providers during simulated cardiac arrest. <i>Pediatr Crit Care Med</i> . 2011;12:e116-121. doi:
45		10.1097/PCC.obo1zez181eg1271
46	135.	Wagner M, Bibl K, Hrdliczka E, Steinbauer P, Stiller M, Gropel P, Goeral K, Salzer-Muhar U,
47	199%	Berger A, Schmolzer GM, et al. Effects of Feedback on Chest Compression Quality: A
48		Randomized Simulation Study. <i>Pediatrics</i> . 2019;143. doi: 10.1542/peds.2018-2441
49	136.	Zhou XL, Wang J, Jin XQ, Zhao Y, Liu RL, Jiang C. Quality retention of chest compression
50	120%	
51		after repetitive practices with or without feedback devices: A randomized manikin study. <i>Am J Emerg Med.</i> 2020;38:73-78. doi: 10.1016/j.ajem.2019.04.025
52		
52 53	137.	Clarke SO, Julie IM, Yao AP, Bang H, Barton JD, Alsomali SM, Kiefer MV, Al Khulaif AH,
55 54		Aljahany M, Venugopal S, et al. Longitudinal exploration of in situ mock code events and
54 55		the performance of cardiac arrest skills. <i>BMJ Simul Technol Enhanc Learn</i> . 2019;5:29-33. doi:
	0	10.1136/bmjstel-2017-000255
56 57	138.	Herbers MD, Heaser JA. Implementing an in Situ Mock Code Quality Improvement
57 58		Program. Am J Crit Care. 2016;25:393-399. doi: 10.4037/ajcc2016583
58 50	139.	Mei Q. Zhang T, Chai J, Liu A, Liu Y, Zhu H. Application of In Situ Scenario Simulation in
59		Advanced Cardiac Life Support Training for Eight-year Medicinal Students. <i>Xiehe Yixue</i>
60		<i>Zazhi</i> . 2023;14:660-664. doi: <u>https://doi.org/10.12290/xhyxzz.2022-0676</u>

 $\ensuremath{\mathbb{C}}$ 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1 2 3 4 5 6	14.0.	Sullivan NJ, Duval-Arnould J, Twilley M, Smith SP, Aksamit D, Boone-Guercio P, Jeffries PR, Hunt EA. Simulation exercise to improve retention of cardiopulmonary resuscitation priorities for in-hospital cardiac arrests: A randomized controlled trial. <i>Resuscitation</i> .
4		2015;86:6-13. doi: <u>https://doi.org/10.1016/j.resuscitation.2014.10.021</u>
5	141.	Hammontree J, Kinderknecht CG. An In Situ Mock Code Program in the Pediatric
6		Intensive Care Unit: A Multimodal Nurse-Led Quality Improvement Initiative. <i>Crit Care</i>
7		<i>Nurse</i> . 2022;42:42-55. doi: 10.4037/ccn2022631
8	142.	Knight LJ, Gabhart JM, Earnest KS, Leong KM, Anglemyer A, Franzon D. Improving Code
9		Team Performance and Survival Outcomes: Implementation of Pediatric Resuscitation
10		Team Training*. <i>Critical Care Medicine</i> . 2014;42:243-251. doi: 10.1097/CCM.ob013e3182a6439d
11 12	143,	Kurosawa H, Ikeyama T, Achuff P, Perkel M, Watson C, Monachino A, Remy D, Deutsch E, Buchanan N, Anderson J, et al. A Randomized, Controlled Trial of In Situ Pediatric
13		Advanced Life Support Recertification ("Pediatric Advanced Life Support Reconstructed")
14 15		Compared With Standard Pediatric Advanced Life Support Recertification for ICU
15		Frontline Providers*. Critical Care Medicine. 2014;42:610-618. doi:
16		10.1097/ccm.000000000024
17 18	144.	Rubio-Gurung S, Putet G, Touzet S, Gauthier-Moulinier H, Jordan I, Beissel A, Labaune J-M, Blanc S, Amamra N, Balandras C, et al. In Situ Simulation Training for Neonatal
19		Resuscitation: An RCT. <i>Pediatrics</i> . 2014;134:e790-e797. doi: 10.1542/peds.2013-3988
20	145.	Xu C, Zhang Q, Xue Y, Chow C-B, Dong C, Xie Q, Cheung P-Y. Improved neonatal
21		outcomes by multidisciplinary simulation—a contemporary practice in the demonstration
22		area of China. Frontiers in Pediatrics. 2023;11. doi: 10.3389/fped.2023.1138633
23	146.	Olasveengen TM, Mancini ME, Perkins GD, Avis S, Brooks S, Castren M, Chung SP,
24		Considine J, Couper K, Escalante R, et al. Adult Basic Life Support: 2020 International
25		Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science
26		With Treatment Recommendations. <i>Circulation</i> . 2020;142:S41-S91. doi:
27		10.1161/CIR.000000000000892
28	147.	Olasveengen TM, Mancini ME, Perkins GD, Avis S, Brooks S, Castren M, Chung SP,
29	,,,	Considine J, Couper K, Escalante R, et al. Adult Basic Life Support: International Consensus
30		on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
31		Treatment Recommendations. <i>Resuscitation</i> . 2020;156:A35-A79. doi:
32		10.1016/j.resuscitation.2020.09.010
33	148.	Dunne CL, Cirone J, Blanchard IE, Holroyd-Leduc J, Wilson TA, Sauro K, McRae AD.
34		Evaluation of basic life support interventions for foreign body airway obstructions: A
35		population-based cohort study. <i>Resuscitation</i> . 2024;201:110258. doi:
36		10.1016/j.resuscitation.2024.110258
37	149.	Bhanderi BG, Palmer Hill S. Evaluation of DeChoker, an Airway Clearance Device (ACD)
38		Used in Adult Choking Emergencies Within the Adult Care Home Sector: A Mixed
39		Methods Case Study. <i>Front Public Health</i> . 2020;8:541885. doi: 10.3389/fpubh.2020.541885
40	150.	Costable NJ, Costable JM, Rabin G. The use of LifeVac, a novel airway clearance device, in
41		the assistance of choking victims aged five and under: Results of a retrospective 10-year
42		observational study. Journal of Pediatric Critical Care. 2024;11:93-98. doi:
43		10,4103/jpcc.jpcc_3_24
44	151.	Dunne CL, Viguers K, Osman S, Queiroga AC, Szpilman D, Peden AE. A 2-year prospective
45		evaluation of airway clearance devices in foreign body airway obstructions. Resusc Plus.
46		2023;16:100496. doi: 10.1016/j.resplu.2023.100496
47	152.	McKinley MJ, Deede J, Markowitz B. Use of a Novel Portable Non-powered Suction Device
48		in Patients With Oropharyngeal Dysphagia During a Choking Emergency. Front Med
49		<i>(Lausanne)</i> . 2021;8:742734. doi: 10.3389/fmed.2021.742734
50	153.	Gal LL PP, Peterman D. Resuscitation of choking victims in a pediatric population using a
51		novel portable non-powered suction device: Real world data. Pediatr Ther
52		https://vitalvac.com/wp-content/uploads/2024/07/estudo-2.pdf. 2020.
53	154.	Norii T, Igarashi Y, Yoshino Y, Nakao S, Yang M, Albright D, Sklar DP, Crandall C. The
54		effects of bystander interventions for foreign body airway obstruction on survival and
55		neurological outcomes: Findings of the MOCHI registry. <i>Resuscitation</i> . 2024;199:110198. doi:
56		10.1016/j.resuscitation.2024.110198
57	155.	Svavarsdottir H OT, Mancini MB, Avis S, Brooks S, Castren M, Chung S, Considine J,
58		Kudenchuk P, Perkins G, Ristagno G, Semeraro F, Smith C, Smyth M, Morley PT, -on behalf
59		of the International Liaison Committee on Resuscitation Basic Life Support Task Force.
60		Harm from CPR to Victims Not in Cardiac Arrest Consensus on Science with Treatment

 ${}^{\odot}$ 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1		Recommendations [Internet] Brussels, Belgium: International Liaison Committee on
2 3		Resuscitation (ILCOR) Basic Life Support Task Force, 2019 Dec 28th. Available from:
3		http://ilcor.org. 2020.
4 5 6	156.	White L, Rogers J, Bloomingdale M, Fahrenbruch C, Culley L, Subido C, Eisenberg M, Rea T.
5		Dispatcher-assisted cardiopulmonary resuscitation: risks for patients not in cardiac arrest.
6		<i>Circulation</i> . 2010;121:91-97. doi: <u>https://dx.doi.org/10.1161/CIRCULATIONAHA.109.872366</u>
7	157.	Tanaka Y, Nishi T, Takase K, Yoshita Y, Wato Y, Taniguchi J, Hamada Y, Inaba H. Survey of
8		a protocol to increase appropriate implementation of dispatcher-assisted cardiopulmonary
9		resuscitation for out-of-hospital cardiac arrest. <i>Circulation</i> . 2014;129:1751-1760. doi:
10		https://dx.doi.org/10.1161/CIRCULATIONAHA.113.004409
11	158.	Ng JYX, Sim ZJ, Siddiqui FJ, Shahidah N, Leong BS, Tiah L, Ng YY, Blewer A, Arulanandam
12		S, Lim SL, et al. Incidence, characteristics and complications of dispatcher-assisted
13		cardiopulmonary resuscitation initiated in patients not in cardiac arrest. <i>Resuscitation</i> .
14		2022;170:266-273. doi: 10.1016/j.resuscitation.2021.09.022
15	159.	Moriwaki Y, Sugiyama M, Tahara Y, Iwashita M, Kosuge T, Harunari N, Arata S, Suzuki N.
16	J)/	Complications of bystander cardiopulmonary resuscitation for unconscious patients
17		without cardiopulmonary arrest. <i>J Emerg Trauma Shock</i> . 2012;5:3-6. doi: 10.4103/0974-
18		2700.93094
19	160.	Haley KB, Lerner EB, Pirrallo RG, Croft H, Johnson A, Uihlein M. The frequency and
20	1000	consequences of cardiopulmonary resuscitation performed by bystanders on patients who
21		are not in cardiac arrest. Prehosp Emerg Care. 2011;15:282-287. doi: 10.3109/10903127.2010.541981
22	161.	Bazirete O NM, Uwimana MC, Umubyeyi A, Marilyn E. Factors affecting the prevention of
$\frac{22}{23}$	1013	postpartum hemorrhage in Low-and Middle-Income Countries: A scoping review of the
24		literature. Journal of Nursing Education and Practice. 2020;11(1):66.
25	162.	Saccone G, Caissutti C, Ciardulli A, Abdel-Aleem H, Hofmeyr GJ, Berghella V. Uterine
26	102.	
20 27		massage as part of active management of the third stage of labour for preventing
28		postpartum haemorrhage during vaginal delivery: a systematic review and meta-analysis
28 29		of randomised trials. <i>BJOG.</i> 2018;125:778-781. doi: 10.1111/1471-0528.14923
	163,	Escobar MF, Nassar AH, Theron G, Barnea ER, Nicholson W, Ramasauskaite D, Lloyd I,
30		Chandraharan E, Miller S, Burke T, et al. FIGO recommendations on the management of
31		postpartum hemorrhage 2022. <i>Int J Gynaecol Obstet</i> . 2022;157 Suppl 1:3-50. doi:
32		10.1002/ijg0.14116
33	164.	Giouleka S, Tsakiridis I, Kalogiannidis I, Mamopoulos A, Tentas I, Athanasiadis A, Dagklis
34		T. Postpartum Hemorrhage: A Comprehensive Review of Guidelines. Obstet Gynecol Surv.
35		2022;77:665-682. doi: 10.1097/OGX.000000000000000161
36	165.	Hofmeyr GJ, Abdel-Aleem H, Abdel-Aleem MA. Uterine massage for preventing
37		postpartum haemorrhage. <i>Cochrane Database Syst Rev</i> . 2013;2013:CD006431. doi:
38		10.1002/14651858.CD006431.pub3
39	166.	Likis FE, Sathe NA, Morgans AK, Hartmann KE, Young JL, Carlson-Bremer D, Schorn M,
40		Surawicz T, Andrews J. In: <i>Management of Postpartum Hemorrhage</i> . Rockville (MD); 2015.
41	167.	Prata N, Bell S, Weidert K. Prevention of postpartum hemorrhage in low-resource settings:
42		current perspectives. <i>Int J Womens Health</i> . 2013;5:737-752. doi: 10.2147/IJWH.S51661
43	168.	Tuncalp O, Souza JP, Gulmezoglu M, World Health O. New WHO recommendations on
44		prevention and treatment of postpartum hemorrhage. Int J Gynaecol Obstet. 2013;123:254-
45		256. doi: 10.1016/j.ijg0.2013.06.024
46	169.	Weeks A. The prevention and treatment of postpartum haemorrhage: what do we know,
47		and where do we go to next? <i>BJOG</i> . 2015;122:202-210. doi: 10.1111/14.71-0528.13098
48	170.	Ngichabe SK, Gatinu BW, Nyangore MA, Karuga R, Wanyonyi SZ, Kiarie JN. Reminder
49	<i>.</i>	Systems for Self Uterine Massage in the Prevention of Postpartum Blood Loss. East Afr
50		Med J. 2012;89:128+133.
51	171.	Singletary EM LJ, Berry D, Cassan P, Pek JH, Thilakasiri K, Djärv T, on behalf of the
52	~	International Liaison Committee on Resuscitation First Aid Task Force. Preservation of
53		traumatic complete amputated or avulsed body parts in the out-of-hospital setting Task
54		Force Synthesis of a Scoping Review. [Internet] Brussels, Belgium: International Liaison
55		Committee on Resuscitation (ILCOR) First Aid Task Force. 2024. Accessed 4 December
56		2024.
57		,
51		