CONFIDENTIAL

1	2025 ILCOR Statement
2	2025 International Consensus on Cardiopulmonary Resuscitation and Emergency
3	Cardiovascular Care Science With Treatment Recommendations
4	Education, Implementation, and Teams
5	
6	Authors: Robert Greif (chair EIT), Adam Cheng (vice-chair EIT), Cristian Abelairas-
7	Gomez, Katherine Allan, Jan Breckwoldt, Andrea Cortegiani, Aaron Donoghue, Kathryn
8	Eastwood, Barbara Farquharson, Ming-Ju Hsieh, Tracy Kidd, Ying-Chih Ko, Kasper G
9	Lauridsen, Yiqun Lin, Andrew Lockey, Tasuku Matsuyama, Sabine Nabecker, Kevin Nation,
10	Alexander Olaussen, Sebastian Schnaubelt, Taylor Sawyer, Chih-Wei Yang, Joyce Yeung
11	Collaborators: Alanoud Alghaith, Theresa Aves, Adam Boulton, Natalie Anderson, Emma
12	Buergstein, Aida Carballo-Fazanes, Jon Duff, Bianca Flaim, Heike Geduld, Mariachiara Ippolito,
13	Teruko Kishibe, Tse-Ying Lee, Julian Lennertz, Brenna Leslie, Kai-Wei Lin, Henry Cheng-Heng
14	Liu, Matthew Olejarz, Timo de Raad, Andrea Scapigliati, Federico Semeraro, Charly Southern,
15	Devita Stallings, Lorrel Toft, Sandra Viggers
16	

1 Abstract

2	The International Liaison Committee on Resuscitation conducts continuous reviews of
3	new, peer-reviewed, published cardiopulmonary resuscitation science and publishes more
4	comprehensive reviews every 5 years. The Education, Implementation, and Teams chapter of the
5	2025 International Consensus on Cardiopulmonary Resuscitation and Emergency
6	Cardiovascular Care Science With Treatment Recommendations describes all published
7	resuscitation evidence reviewed by the International Liaison Committee on Resuscitation's
8	Education, Implementation, and Teams Task Force science experts since 2020. This summary
9	addresses the evidence in 4 subchapters: (1) training populations, (2) faculty development, (3)
10	knowledge translation and implementation, and (4) instructional design. Members from the
11	Education, Implementation, and Teams Task Force have assessed, discussed, and debated the
12	quality of the evidence, based on Grading of Recommendations, Assessment, Development, and
13	Evaluation criteria, and their statements include consensus treatment recommendations. Insights
14	into the deliberations of the task force are provided in the Justification and Evidence-to-Decision
15	Framework Highlights sections. Priority knowledge gaps for further research are listed.
16	Key words: Education, implementation, team, resuscitation, CPR, teaching, training,
17	simulation, laypersons, health care professional, facilitator, instructor, faculty development
18	

1 INTRODUCTION

2 This International Liaison Committee on Resuscitation (ILCOR) Education, Implementation, 3 and Teams (EIT) Task Force 2025 International Consensus on Cardiopulmonary Resuscitation 4 and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) 5 publication includes all the reviews conducted by the EIT Task Force in the previous year. 6 Reviews conducted and published since the 2020 publication are also summarized to provide a 7 single, more comprehensive reference document for readers. New work from the past year 8 encompasses 12 PICOST (population, intervention, comparator, outcome, study design, and time 9 frame) studies reviewed in some capacity, including 10 systematic reviews (SysRevs). Draft 10 CoSTRs for all 2025 topics evaluated with SysRevs were posted between December 1, 2024, and January 15, 2025, on the ILCOR website.¹ Each draft CoSTR includes the data reviewed and 11 12 draft treatment recommendations, with public comments accepted for 2 weeks after posting. EIT 13 Task Force members considered public feedback and provided responses. All CoSTRs are now 14 available online, adding to the existing CoSTR statements. 15 Although only SysRevs can generate a full CoSTR and new treatment recommendations, 16 many other topics were evaluated with more streamlined processes, including scoping reviews 17 (ScopRevs) and evidence updates (EvUps). Good practice statements, which represent the 18 opinion of task force experts in light of very limited or no direct evidence, can be generated after 19 ScopRevs and occasionally after EvUps in cases where the task force thinks providing guidance 20 is especially important. A separate publication in this issue includes the full details of the 21 evidence evaluation process.² 22 This summary statement contains the final wording of the treatment recommendations and 23 good practice statements as approved by the ILCOR EIT Task Force, as well as summaries of the 24 evidence identified. SysRevs include evidence-to-decision highlights and knowledge gaps, and

1 ScopRevs summarize task force insights on specific topics. Links to the published reviews and 2 full online CoSTRs are provided in the corresponding sections. Evidence-to-decision tables for 3 SysRevs are provided in Appendix A, and the complete EvUp worksheets are provided in 4 Appendix B. 5 Topics are presented using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach³ in the PICOST format. To minimize redundancy, the study 6 7 designs have been removed from the text except in cases where the designs differed from the EIT 8 standard criteria. Standard study designs included are randomized controlled trials (RCTs) and 9 nonrandomized studies (nonrandomized controlled trials, interrupted time series, controlled 10 before-and-after studies, cohort studies), and all languages were included provided there was an 11 English abstract. Unpublished studies (eg, conference abstracts, trial protocols), letters, 12 editorials, comments, and case reports were excluded. 13 From 2020 onward, the EIT Task Force grouped its PICOST questions in 4 categories and 14 identified some topics to exclude because the content was either outdated or irrelevant due to 15 more modern teaching or methods of implementation. The 4 categories and the topics addressed 16 in this EIT Task Force CoSTR summary are delineated in Table 1. All EIT PICOST questions 17 reviewed since 2020 have been reviewed in some form for 2025. The type of review done this 18 year and the most recent preceding review are summarized in Table 1. A supplementary Table

19 S1 lists previous and updated treatment recommendations from 2021 to 2025 and includes the

20 corresponding knowledge gaps.

Readers are encouraged to monitor the ILCOR website¹ to provide feedback on planned
 systematic reviews and to provide comments when additional draft reviews are posted.

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

	PICOST number	Type of review for 2025	Year of previous review	Type of previous review
Training populations				
Disparities in education	EIT 6102	EvUp	2023	ScopRev
EMS experience and exposure	EIT 6104	EvUp	2020	SysRev
BLS training for likely rescuers of high-risk populations	EIT 6105	EvUp	2022	SysRev
Patient outcomes when team member attended CPR course	EIT 6106	EvUp	2022	SysRev
CPR education tailored for specific populations	EIT 6108	EvUp	2024	ScopRev
Faculty development				
Faculty development approaches for CPR instructors	EIT 6200	EvUp	2022	ScopRev
Knowledge translation and implementation				
Debriefing of resuscitation performance	EIT 6307	SysRev	2020	SysRev
Medical emergency systems for adults	EIT 6309	SysRev	2020	SysRev
Systems performance improvements	EIT 6310	SysRev	2020	SysRev
Prehospital critical care for OHCA patients	EIT 6313	SysRev	new in 202	5
CPR coaching during adult and pediatric cardiac arrest	EIT 6314	SysRev	new in 202	5
OHCA Termination of Resuscitation rules	EIT 6303	Adolopment	2020	SysRev
Community initiatives to promote BLS implementation	EIT 6306	ScopRev	2020	ScopRev
Family presence in adult resuscitation	EIT 6300	EvUp	2023	SysRev
Cardiac arrest centers	EIT 6301	EvUp	2024	SysRev
Technology to summon providers	EIT 6302	EvUp	2020	SysRev
Willingness to provide CPR	EIT 6304	EvUp	2020	ScopRev
Clinical decision rules to facilitate in-hospital DNACPR	EIT 6305	EvUp	2022	SysRev
Termination of resuscitation for IHCA	EIT 6308	EvUp	2020	SysRev
Chain of survival	EIT 6311	EvUp	2024	ScopRev
Impact of support on mental health in co-survivors of CA patients	EIT 6315	EvUp	new in 202	5
Instructional design				
CPR feedback devices during training	EIT 6404	SysRev	2020	SysRev
CPR self-instruction versus instructor-guided	EIT 6406	SysRev	2021	SysRev
In situ training	EIT 6407	SysRev	2020	EvUp
Manikin fidelity in resuscitation education	EIT 6410	SysRev	2020	EvUp
Cognitive aids during resuscitation	EIT 6400	EvUp	2024	SysRev

1 Table 1. Overview of PICOSTs Addressed From 2021-2025

	PICOST number	Type of review for 2025	Year of previous review	Type of previous review
Provider workload and stress during resuscitation	EIT 6401	EvUp	2024	ScopRev
Stepwise approach to skills training in resuscitation	EIT 6402	EvUp	2023	SysRev
Immersive technologies-virtual and augmented reality	EIT 6405	EvUp	2024	SysRev
Blended learning approach for life-support education	EIT 6409	EvUp	2022	SysRev
Gamified learning versus nongamified learning	EIT 6412	EvUp	2024	SysRev
Scripted debriefing versus nonscripted debriefing	EIT 6413	EvUp	2024	ScopRev
Rapid-cycle deliberate practice in resuscitation training	EIT 6414	EvUp	2024	SysRev
Team competencies in resuscitation training	EIT 6415	EvUp	2024	SysRev

1 BLS indicates basic life support; CPR, cardiopulmonary resuscitation; DNACPR, do not attempt cardiopulmonary resuscitation; EMS, emergency medical services; 2

IHCA, in-hospital cardiac arrest; OHCA, out-of-hospital cardiac arrest; and PICOST, population, intervention, comparator, outcome, study design, and time frame.

3

1 **CONTENTS**

2 • Training Populations

3		_	Disparities in Education (EIT 6102, ScopRev 2023, EvUp 2025)
4		_	Emergency Medical Services (EMS) Experience and Exposure (EIT 6104, EvUp
5			2025)
6		_	Basic Life Support (BLS) Training for Likely Rescuers of High-Risk Populations
7			(EIT 6105, SysRev 2022, EvUp 2025)
8		_	Patient Outcome of Team Member Attending Cardiopulmonary Resuscitation (CPR)
9			Course (EIT 6106, SysRev 2022, EvUp 2025)
10		_	CPR Education Tailored for Specific Populations (EIT 6108, ScopRev 2024, EvUp
11			2025)
12	•	Fa	culty Development
13		_	Approaches for CPR Instructors (EIT 6200, ScopRev 2022, EvUp 2025)
14	•	Kr	nowledge Translation and Implementation
15		_	Debriefing of Resuscitation Performance (EIT 6307, SysRev 2025)
16		_	Medical Emergency Systems for Adults (EIT 6309, SysRev 2025)
17		_	Systems Performance Improvements (EIT 6310, SysRev 2025)
18		_	Prehospital Critical Care for Out-of-Hospital CA Patients (EIT 6313, SysRev 2025)
19		_	CPR Coaching During Adult and Pediatric Cardiac Arrest (EIT 6314, SysRev 2025)
20		_	Out-of-Hospital Cardiac Arrest Termination of Resuscitation (TOR) Rules (EIT 6303,
21			SysRev ADOLOPMENT 2025)
22		_	Community Initiatives to Promote BLS Implementation (EIT 6306, ScopRev 2025)
23		_	Family Presence in Adult Resuscitation (EIT 6300, SysRev 2024, EvUp 2025)
24		_	Cardiac Arrest Centers (EIT 6301, SysRev 2024, EvUp 2025)

1	_	Technology to Summon Providers (EIT 6302, EvUp 2025)
2	_	Willingness to Provide CPR (EIT 6304, EvUp 2025)
3	_	Clinical Decision Rules to Facilitate In-Hospital Do-Not-Attempt CPR (EIT 6305,
4		SysRev 2022, EvUp 2025)
5	_	Termination of Resuscitation for In-hospital Cardiac Arrest (EIT 6308, EvUp 2025)
6	_	Chain of Survival (EIT 6311, ScopRev 2024, EvUp 2025)
7	_	Impact of Support on Mental Health in Cosurvivors of Cardiac Arrest Patients (EIT
8		6315, EvUp 2025)
9	• Ins	structional Design
10	_	CPR Feedback Devices During Training (EIT 6404, SysRev 2025)
11	_	CPR Self-Instruction versus Instructor Guided (EIT 6406, SysRev 2025)
12	_	In Situ Training (EIT 6407, SysRev 2025)
13	_	Manikin Fidelity in Resuscitation Education (EIT 6410, SysRev 2025)
14	_	Cognitive Aids During Resuscitation (EIT 6400, SysRev 2024, EvUp 2025)
15	_	Provider Workload and Stress During Resuscitation (EIT 6401, ScopRev 2024, EvUp
16		2025)
17	_	Stepwise Approach to Skills Training in Resuscitation (EIT 6402, SysRev 2023,
18		EvUp 2025)
19	_	Immersive Technologies-Virtual and Augmented Reality (EIT 6405, SysRev 2024,
20		EvUp 2025)
21	_	Blended Learning Approach for Life-Support Education (EIT 6409, SysRev 2022,
22		EvUp 2025)
23	_	Gamified Learning versus Nongamified Learning (EIT 6412, SysRev 2024, EvUp
24		2025)

- Scripted Debriefing versus Non-scripted Debriefing (EIT 6413, ScopRev 2024, EvUp
 2025)
 Rapid Cycle Deliberate Practice in Resuscitation Training (EIT 6414, SysRev 2024,
- Rapid Cycle Deliberate Practice in Resuscitation Training (EIT 6414, SysRev 2024,
 EvUp 2025)
- 5 Team Competencies in Resuscitation Training (EIT 6415, SysRev 2024, EvUp 2025)
- Topics Not Included in the 2025 Review
- Resuscitation Training in Low-Income Countries (EIT 6100, ScopRev In 2020, task
 force statement 2023)
- 9 Spaced Learning (EIT 6408, SyR 2020, EvUp 2022)
- 10 TRAINING POPULATIONS
- 11 Disparity in Layperson Resuscitation Education (EIT 6102, ScopRev 2023, EvUp 2025)
- 12 A ScopRev was performed for 2023, and details can be found in the 2023 CoSTR
- 13 summary.⁴⁻⁶ The complete EvUp is provided in Appendix B.

14 Population, Intervention, Comparator, Outcome, and Time Frame

- Population: Laypersons (defined as non-healthcare professional)
- Intervention (Exposure): Presence of any specific factor
- 17 Comparator: Absence of the specific factor
- 18 Outcome: Likelihood of undertaking resuscitation education, including adult/pediatric
- 19 BLS, and neonatal resuscitation program
- 20 Time frame: January 1, 2023, to October 31, 2024
- 21 Summary of Evidence
- 22 Two new observational studies were found investigating disparities in layperson
- 23 resuscitation training.^{7,8} The factors identified in the 2 studies align with the categories outlined

1	in the previous scoping review, specifically personal factors, socioeconomic status and	
2	education, and geographic factors. An updated SysRev was not thought to be warranted, but	
3	there is a need for further research to explore overlooked aspects that may be associated with	
4	these disparities.	
5	EMS Experience and Exposure (EIT 6104, EvUp)	
6	Population, Intervention, Comparator, Outcome, and Time Frame	
7	• Population: Adults and children with out-of-hospital cardiac arrest (OHCA)	
8	• Intervention: Resuscitation by experienced emergency medical service practitioners or	
9	practitioners with higher exposure to resuscitation	
10	• Comparator: Resuscitation by less-experienced or lower-exposed practitioners	
11	• Outcomes: Improved OHCA patient outcome (good neurological outcome at	
12	discharge/30 days; survival to hospital discharge/30 days; survival to hospital [event	
13	survival]; return of spontaneous circulation [ROSC]); EMS personnel	
14	confidence/satisfaction with OHCA procedures/training	
15	• Time frame: April 10, 2020, to May 6, 2024	
16	Summary of Evidence	
17	A SysRev was performed for 2020 and details can be found in the 2020 CoSTR.9-11 The	
18	complete EvUp is provided in Appendix B. No further relevant papers were identified; therefore,	
19	a SysRev is not required.	
20	Treatment Recommendations (2020)	
21	We suggest that EMS systems (1) monitor their clinical personnel's exposure to	
22	resuscitation and (2) implement strategies, where possible, to address low exposure or ensure	
23	that treating teams have members with recent exposure (weak recommendation, very low-	
24	certainty evidence).	
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.	

1	BLS Training for Likely Rescuers of High-Risk Populations (EIT 6105, SysRev 2022, EvUp
2	2025)
3	A SysRev was performed for 2022, and details can be found in the 2022 CoSTR
4	summary. ^{12,13} The complete EvUp is provided in Appendix B.
5	Population, Intervention, Comparator, Outcome, and Time Frame
6	• Population: Adults and children at high risk of OHCA
7	• Intervention: Targeted BLS training of likely rescuers (eg, family members or caregivers)
8	• Comparator: No such targeting
9	• Outcomes
10	- Patient: Favorable neurological outcome at hospital discharge or to 30 days, survival
11	at hospital discharge or to 30 days, ROSC, rates of bystander CPR (subsequent use of
12	skills), bystander CPR quality during an OHCA (any available CPR metrics), and
13	rates of automated external defibrillator (AED) use (subsequent use of skills)
14	- Educational: CPR quality and correct AED use at end of training and within 12
15	months of training, CPR and AED knowledge at end of training and within 12 months
16	after training, confidence and willingness to perform CPR at end of training and
17	within 12 months after training, and CPR training of others
18	• Time frame: January 1, 2014, to July 31, 2024
19	Summary of Evidence
20	The 5 new observational studies identified are consistent in supporting previous findings
21	and do not substantially change the weight of evidence. ¹⁴⁻¹⁸ A SysRev for studies before 2010
22	will be considered.

1 Treatment Recommendations (2022)

2	We recommend BLS training for likely rescuers of populations at high-risk of out-of-
3	hospital cardiac arrest (strong recommendation, low- to moderate-certainty evidence).
4	We recommend healthcare professionals encourage and direct likely rescuers of
5	populations at high risk of cardiac arrest to attend BLS training (good practice statement).
6	Patient Outcomes When CPR Team Member Attended a CPR Course (EIT 6106, SysRev
7	2022, EvUp 2025)
8	A SysRev was performed in 2022 and details can be found in the 2022 CoSTR
9	summary. ^{12,13,19} The complete EvUp is provided in Appendix B.
10	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
11	• Population: Patients of any age requiring in-hospital cardiac arrest (IHCA) resuscitation
12	• Intervention: Prior participation of ≥ 1 members of the resuscitation team in an accredited
13	advanced life support (ALS) course
14	Comparator: No such participation
15	• Outcomes: ROSC, survival to hospital discharge or to 30 days, survival to 1 year, and
16	survival with favorable neurological outcome
17	- Additional outcomes for Neonatal Resuscitation Training: stillbirth rate, neonatal and
18	perinatal mortality
19	• Study designs: In this review we excluded studies of the impact of individual components
20	of courses (eg, airway, drug therapy, defibrillation), studies relating to BLS and first aid
21	courses, studies on dedicated trauma courses (eg, Advanced Trauma Life Support,
22	European Trauma Course), and studies relating to OHCA.
23	• Time frame: June 1, 2022, to July 31, 2024

1 Sur	nmary o	f Evide	ence
-------	---------	---------	------

2

No relevant studies were identified, and no new SysRev is indicated.

3 Treatment Recommendations (2022)

4 We recommend the provision of accredited ALS training (advanced cardiovascular life 5 support, ALS) for health care providers who provide ALS care for adults (strong 6 recommendation, very low-certainty evidence). 7 We recommend the provision of accredited courses in neonatal resuscitation training 8 (neonatal resuscitation training, neonatal resuscitation programs) and Helping Babies Breath for 9 health care providers who provide ALS care for newborns and babies (strong recommendation, 10 very low-certainty evidence). 11 We have made a discordant recommendation (strong recommendation despite very low-12 certainty evidence) because we have placed a very high value on an uncertain but potentially 13 life-preserving benefit, and the intervention is not associated with prohibitive adverse effects. 14 CPR Education Tailored for Specific Populations (EIT 6108, ScopRev 2023, EvUp 2025) 15 The complete EvUp is provided in Appendix B. A ScopRev was performed in 2023, and details can be found in the 2023 CoSTR summary.^{4,5,20} 16 17 Population, Intervention, Comparator, Outcome, Study Design, and Time Frame • Population: Specific adult layperson populations and/or groups (defined below) 18 19 participating in BLS training 20 • Intervention: Tailored BLS training 21 • Comparator: Generic BLS training 22 • Outcomes: Patient: ROSC, survival to hospital discharge, 30 days, and 12 months; neurological 23 _

- 24 outcome

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1	- Clinical: Starting CPR in case of real cardiac arrest, performance during real CPR
2	- Educational: knowledge and skills acquisition, willingness to perform CPR, barriers
3	to performing CPR, participant satisfaction and/or knowledge and skills retention at
4	end of the respective course and later (eg, 3 months, 1 year), implementation success,
5	resource implications, and cost-effectiveness
6	• Study designs: Research aimed at teaching BLS to children, research on CPR training for
7	various healthcare professionals (both sufficiently covered elsewhere) were excluded.
8	• Time frame: January 1, 2023, to October 22, 2024
9	Summary of Evidence
10	Insights from the 2023 review included that tailored BLS education for specific
11	populations is probably feasible and that groups that may otherwise have been left out (eg,
12	individuals with disabilities) can be added into the pool of potential bystander CPR providers.
13	Specific tailored courses for first responders with and without a duty to respond need to be
14	explored. In this EvUp search, no relevant studies were found. There is too little evidence on the
15	topic of tailored BLS training for specific population groups to perform a SysRev, but the task
16	force thought a good practice statement was important to encourage progress in this area.
17	Treatment Recommendations (2025)
18	The task force encourages resuscitation councils to develop, offer, and implement
19	tailored BLS courses for specific populations based on their needs and specific educational
20	approach (good practice statement).

21 FACULTY DEVELOPMENT

1	Faculty Development Approaches for Resuscitation Instructors (EIT 6200, ScopRev 2022,
2	EvUp 2025)
3	A ScopRev was conducted for 2022, ²¹ and details of that review can be found in the 2022
4	CoSTR summary. ^{12,13} The complete EvUp is provided in Appendix B.
5	Population, Intervention, Comparator, Outcome, Study Designs and Time Frame
6	• Population: Instructors of accredited life-support courses, including basic life support
7	(BLS), pediatric basic life support, ALS, pediatric advanced life support, and neonatal
8	resuscitation programs
9	• Intervention: Any faculty development approach to improve instructional competence in
10	accredited life-support courses
11	• Comparator: No such approach or any other faculty development approach
12	• Outcomes:
13	– Patient outcomes:
14	• Critical: outcome of patients resuscitated by students of the instructors, including
15	favorable neurological outcome, survival to discharge, short-term survival,
16	ROSC, sustained ROSC, and survival to admission
17	- Educational outcomes:
18	• Critical: Skill performance of students of the instructors in actual resuscitation
19	 Important: Knowledge, skill performance, attitudes, willingness to perform
20	resuscitation, and confidence of students of the instructors immediately after the
21	provider course or at defined periods of time after course completion
22	 Instructors outcome:
23	 Important: Knowledge, instructional skills, and attitudes of instructors at end of
24	instructor training course; knowledge, instructional skills, and attitudes of

1	instructors at defined periods of time after end of instructor training course;
2	confidence of instructors to teach students at end of instructor training course at
3	defined periods of time after course completion; instructor acceptance of a faculty
4	development approach; cost of faculty development
5	• Study designs: In addition to standard criteria, grey literature, non-peer-reviewed studies,
6	unpublished studies, conference abstracts, and trial protocols were eligible for inclusion.
7	• Time frame: January 1, 2022 (after last research), to June 30, 2024
8	Summary of Evidence
9	Two studies identified in this evidence update found that instructor courses with reduced
10	face-to-face time were not inferior to traditional instructor courses. ^{22,23} Two other studies
11	incorporating techniques for identifying and correcting common student errors improved student
12	BLS performance. ^{24,25} This suggests that integrating techniques for recognizing common student
13	mistakes in instructor courses may enhance the effectiveness of teaching. This ScopRev has not
14	identified sufficient evidence to support a SysRev.
15	Treatment Recommendations (2025)
16	The task force encourages resuscitation councils to implement faculty development
17	programs for the teaching staff of their accredited resuscitation courses (good practice
18	statement).
19	KNOWLEDGE TRANSLATION AND IMPLEMENTATION
20	Debriefing of Clinical Resuscitation Performance (EIT 6307, SysRev 2025)
21	Rationale for Review
22	Strategies to provide debriefing to improve CPR team performance and optimize delivery
23	of care are available and often common practice. However, there are few data showing either
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation

Resuscitation.

improved patient outcome or negative side effects (eg, cost, emotional impact on professionals). The last review of this topic was in 2020, and awareness of new data prompted this SysRev, Population: Healthcare providers performing resuscitation in any clinical setting Outcomes: to medication administration, initiation of CPR, time to defibrillation, chest compression fraction, etc.), and resuscitation knowledge hospital discharge/30 days, survival to hospital admission, event survival Time frame: January 1, 2014, to September 26, 2024 event debriefings;²⁸ short, individual oral debriefings;²⁹ hot or cold debriefings;³⁰ weekly

debriefing sessions with audiovisual feedback during cardiac arrest³¹ after-training workshops 21

with debriefing;³⁴ video-assisted, performance-focused debriefings;³⁶ positive-pressure 22

ventilation refresher and performance debriefings;³⁵ and post-resuscitation interdisciplinary team 23

debriefings.³³ One study stratified hospitals by debriefing frequency.³² Because of this 24

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

3 which was registered in Prospective Register of Systematic Reviews (PROSPERO) (CRD42024595033). The full CoSTR is available on the ILCOR website.²⁶ 4 5 Population, Intervention, Comparator, Outcome, and Time Frame 6 7 • Intervention: Postevent clinical debriefing 8 • Comparator: No debriefing 9 10 - Clinical: Resuscitation skills performance (in clinical contexts, eg, CPR quality, time 11 12 13 - Patient: Favorable neurological outcome at hospital discharge/30 days, survival at 14 15 16 **Consensus on Science** Six studies in adults,²⁷⁻³² 1 in children,³³ and 3 in neonatal cardiac arrests³⁴⁻³⁶ were 17 18 identified. All were nonrandomized studies providing very low certainty of evidence. Interventions included post-resuscitation debriefings;²⁷ audiovisual feedback plus weekly post-19

1

2

20

1 heterogeneity, no meta-analyses could be performed. Key study findings are presented in Table

2 2.

Outcome of interest	Favorable neurological outcome	Survival to hospital discharge	ROSC	Chest compression depth	Chest compression rate	Chest compression fraction	Adherence to resuscitation guidelines
Number of studies	5 nonrandomized studies ^{28-30,32,33}	6 nonrandomized studies ^{27-29,32,33}	7 nonrandomized studies ^{28-31,33,34}	3 nonrandomized studies ^{28,29,31}	4 nonrandomized studies ^{27-29,31}	4 nonrandomized studies ^{27-29,31}	2 studies ^{35,36}
Number of patients	46 145	46 269	46 459	1773	1897	1897	381
Evidence	1 study favored hot debriefings ³⁰ —using a Bayesian hierarchical logistic regression model— 77% probability of increased odds of favorable neurological outcome with hot debriefings (OR 1.11; 95% CI, 0.83– 1.44). However, 1% probability of increased odds of favorable neurological outcome with cold debriefings (OR 0.69; 95% CI, 0.49– 0.93).	1 study favored hot debriefings, ³⁰ finding 67% probability of increased odds of survival with hot debriefings (OR, 1.06; 95% CI, 0.81–1.37). However, 11% probability of increased odds of survival with cold debriefings (OR, 0.83; 95% CI, 0.62–1.11)	1 study ³⁰ found 48% probability that hot debriefings increase the odds of ROSC (OR, 0.99; 95% CI, 0.80–1.21) and 89% probability that cold debriefings increase the odds of ROSC (OR, 1.15; 95% CI, 0.90–1.43).	1 study ³¹ found that CC depth was 50 mm (10) with debriefing and 44 mm (10) without debriefing (<i>P</i> <0.001). No effect size reported.	1 study ²⁷ found that CC rate was 93/min with debriefing (9) and 81/min (13) without (<i>P</i> =0.03). No effect size reported.	1 study ²⁷ found that CCF was 79% (70%–85%) with debriefing and 86% (82%–89%) without. No effect size or <i>P</i> value reported.	1 study ³⁶ found a median total NRPE score of 89% (86, 93) with debriefing and 77% (75, 81) without (<i>P</i> <0.001).
	1 study ³³ found debriefing was associated with improved favorable neurologic outcome. Univariate: (50% versus 29%; <i>P</i> =0.036); multivariate: (aOR,	1 study ³³ found no association between debriefing and improved survival in univariate analysis (52% versus 33%;	1 study ³¹ -reported a ROSC rate of 59% with debriefing, and 45% without (P=0.03). No effect size reported.		1 study ³¹ found a CC rate of 105/min (10) with debriefing and 100/min (13) without (P =0.003). No effect size reported.	1 study ³¹ found a no-flow fraction of 0.13 (0.10) with debriefing and 0.20 (0.13) without (P <0.001). No effect size reported.	1 study ³⁵ found a median NRPI score of 89% (86% -92%) with debriefing and 77% (75% - 81%) without (P <0.001.)

Table 2. Key Findings of Included Studies on Post-event Debriefing

1

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

Outcome of interest	Favorable neurological outcome	Survival to hospital discharge	ROSC	Chest compression depth	Chest compression rate	Chest compression fraction	Adherence to resuscitation guidelines
	2.75; 95% CI, 1.01– 7.5; <i>P</i> =0.047).	P=0.054); after controlling for potential confounders (aOR, 2.5; 95% CI, 0.91–6.8; P=0.075).					
			1 study ³⁴ showed no significant differences between groups for time of neonate's color to return to normal, and Apgar scores at 1, 5, and 10 min were higher in the debriefing group compared with those reported for other groups. No effect sizes reported.				
	3 studies showed no effect. ^{28,29,32}	4 studies showed no effect. ^{27-29,32}	4 studies showed no effect. ^{28,29,32,33}	2 studies showed no effect. ^{28,29}	2 studies showed no effect. ^{28,29}	2 studies showed no effect. ^{29,30}	

aOR indicates adjusted odds ratio; CC, chest compressions; CCF, chest compression fraction; NRPE, Neonatal Resuscitation Performance Evaluation; OR, odds ratio;
 and ROSC, return of spontaneous circulation.

Greif 20

1	Prior Treatment Recommendations (2020)
2	We suggest data-driven, performance-focused debriefing of rescuers after IHCA for both
3	adults and children (weak recommendation, very low-certainty evidence).
4	We suggest data-driven, performance-focused debriefing of rescuers after OHCA in both
5	adults and children (weak recommendation, very low-certainty evidence).
6	Treatment Recommendations (2025)
7	We suggest performing post-event debriefing after adult, pediatric, and neonatal cardiac
8	arrest in all settings (weak recommendation, very low-certainty evidence).
9	Justification and Evidence-to-Decision Framework Highlights
10	The complete evidence-to-decision table is provided in Appendix A.
11	Performance of post-event debriefing was either associated with no effect or with
12	improved outcome (favorable neurological outcome, survival to discharge, ROSC, chest
13	compression depth, chest compression rate, chest compression fraction, adherence to guidelines).
14	Because of the high heterogeneity across studies (variation in debriefing design, patient
15	population [adults, children, neonates], outcome measures) no statement can be made about the
16	most effective type of debriefing. No undesirable effects (eg, emotional trauma to the debriefed
17	team, needed resources-including costs) have been identified, but neutral to positive effects on
18	resuscitation outcomes were reported. Hence, we consider that the reported positive effects
19	outweigh any possible undesirable effects. This treatment recommendation is based on
20	nonrandomized studies. No study compared debriefing with no debriefing after CPR in a
21	randomized controlled trial, resulting in serious risk of bias.
22	Knowledge Gaps

• RCTs on debriefing after CPR are needed.

1	• The effect of debriefing by subgroups such as adult versus pediatric cardiac arrest, in-
2	hospital versus out-of-hospital setting, or hot versus cold debriefing
3	• Cost-effectiveness of debriefing or effect of post-event debriefings in low-resource
4	settings are warranted.
5	• Whether there are any negative effects of debriefing on the resuscitation team
6	Medical Emergency Systems for Adult In-Hospital Patients (EIT 6309, SysRev 2025)
7	Rationale for Review
8	Patients admitted to hospital might be at risk of deterioration, which can lead to cardiac
9	arrest. These patients often have symptoms and signs of deterioration hours before cardiac
10	arrest.37 A rapid response system includes an afferent component to identify such deterioration
11	early to prevent serious adverse events and an efferent component, which is a rapid response
12	team or a medical emergency team. ^{38,39} Because there is uncertainty if rapid response or medical
13	emergency teams improve patient outcomes after cardiac arrest, this SysRev was initiated by the
14	EIT Task Force. It was registered at PROSPERO (CRD42024615077), and the CoSTR is
15	available on the ILCOR website. ⁴⁰
16	Population, Intervention, Comparator, Outcome, and Time Frame
17	• Population: Adults at risk of cardiac or respiratory arrest in hospital
18	• Intervention: Rapid response system (includes rapid response team or medical emergency
19	team)
20	Comparator: No rapid response system
21	• Outcomes: Survival to hospital discharge with good neurological outcome; survival to
22	hospital discharge; in-hospital incidence of cardiac/respiratory arrest
23	• Time frame: All years to September 9, 2024

1 Consensus on Science

2	Because of extensive heterogeneity between the studies, no meta-analyses were
3	performed. However, the summary of available evidence indicates reduced incidence of cardiac
4	arrest in those hospitals that implemented a rapid response system, and a dose-response effect.
5	Table 3 presents data on the incidence of cardiac arrest, and survival to discharge or 30 days. We
6	did not find any study reporting data for survival with favorable neurological outcome. Of the 56
7	nonrandomized studies reporting the incidence of cardiac arrest after implementation of a rapid
8	response system, 41-96 39 showed improvement, 41-43,45,49,51-57,59,61-65,67,68,71,73-77,81-90,94,95 and 17

9 showed no improvement. 44,46-48,50,58,66,69,70,72,78,80,91-93,96

Study design	Total number of studies	Evidence
RCTs	3 RCTs ⁹⁷⁻⁹⁹ on incidence of cardiac arrest	1 study reported cardiac arrest rates of 1.3 versus 1.0/1000 admissions (OR, 0.71; 95% CI, 0.33–0.52) with or without RRS. ⁹⁷
		After implementation of RRS, the proportion of patients admitted to the ward who received CPR decreased from 4.86% to 3.61% (unadjusted OR, 0.73; 95% CI, 0.64– 0.85). There was no difference after adjustment (aOR, 1.00; 95% CI, 0.69–1.48). ⁹⁸
		Cardiac arrest incidence 1.64/1000 in patients without RRS versus 1.31/1000 with RRS (<i>P</i> =0.306; 95% CI, -0.264
		(-2.449 to 1.921). ⁹⁹
Non-RCTs	11 nonrandomized studies on survival ^{41-49,100,101}	8 studies ^{41-44,46-48,100} reported no improvement in survival to discharge after cardiac arrest.
		1 pre/post RRS implementation study found no difference in survival 30 days after cardiac arrest. ⁴⁵
		1 pre/post study showed increased long-term survival post- surgery in hip fracture patients: 71.8 months pre-RRS versus 75.0 months post-RRS (<i>P</i> =0.008). ¹⁰¹
		1 study found RRS did not impact overall survival to

Table 3. Summary of Findings of Studies on Effect of Rapid Response Systems on Incidence and Outcome of In-hospital Cardiac Arrest

12 CPR indicates cardiopulmonary resuscitation; RCT, randomized controlled trial; and RRS, rapid response system.

1 Treatment Recommendations (2025)

We suggest that hospitals consider the introduction of a rapid response system to reduce
the incidence of in-hospital cardiac arrest (weak recommendation, low-quality evidence).

4 Justification and Evidence-to-Decision Framework Highlights

5 The complete evidence-to-decision table is provided in Appendix A.

6 In making these recommendations, the task force emphasizes the importance of outcomes

7 such as preventing in-hospital cardiac arrests and increasing survival to hospital discharge,

8 despite the considerable costs associated with these systems. Numerous healthcare institutions

9 globally have effectively adopted rapid response systems,¹⁰² and it is recommended by the

10 Institute for Healthcare Improvement.¹⁰³

11 Implementing an effective rapid response system requires strong afferent (detection and

12 activation) and efferent (response by the rapid response team/medical emergency team team)

13 limbs. These are supported by administrative and quality improvement measures,¹⁰⁴ which

14 include comprehensive staff training on consistent and appropriate monitoring of vital signs,

15 clear protocols on early warning scores to facilitate early detection, and a tiered clinical response

16 structure.

17 Knowledge Gaps

Effect of rapid response systems on long-term survival with positive neurological
 outcome

• Role of technology in enhancing rapid response systems

- Essential components of the afferent limb in rapid response systems (eg, which vital signs, clinical observations, and laboratory parameters should be monitored, as well as the optimal frequency for these assessments)
- Optimal design of education programs to improve the recognition of patient deterioration

 $\ensuremath{\mathbb{O}}$ 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1	• Ideal composition of the efferent limb, or the response team
2	• Most effective mechanism for escalating assistance
3	• Cost-effectiveness of rapid response systems in practice
4	System Performance Improvement (EIT 6310, SysRev 2025)
5	Rationale for Review
6	The clinical outcomes of patients with cardiac arrest differ around the world. There is a
7	need for a systematic review of system-wide interventions to better understand their impact.
8	System performance improvement is defined as hospital-level, community-level, or country-
9	level advancements related to structure, care pathways, processes, and quality of care. This can
10	include single interventions or multidisciplinary approaches deployed to improve outcomes of
11	cardiac arrest patients. As the last systematic review on this topic was in 2020 the EIT Task
12	Force initiated a new review, which was registered in PROSPERO under the number
13	CRD42020161882. The full CoSTR is available on the ILCOR website. ¹⁰⁵
14	Population, Intervention, Comparator, Outcome, and Time Frame
15	• Population: Resuscitation systems caring for patients in cardiac arrest in any setting
16	• Intervention: System performance improvement initiative(s)
17	• Comparator: No system performance improvement initiative(s)
18	• Outcomes: Survival with favorable neurologic outcome at discharge, survival to hospital
19	discharge, skill performance in actual resuscitations, survival to admission, system-level
20	variables
21	• Time frame: July 1, 2020, to June 30, 2024

- 1 Consensus on Science
- 2 This systematic review found 15 new studies,¹⁰⁶⁻¹²⁰ which added to the 27
- 3 publications^{31,33,121-145} from the previous CoSTR in 2020.⁹
- 4 The interventions investigated in the 15 new studies are summarized in Table 4. Those 27
- 5 described previously were included in the earlier publication.¹⁴⁶ Key results from these studies
- 6 are summarized in Table 5.

Study (author, year, setting)	Interventions
Blewer 2020 (OHCA) ¹⁰⁷	National bystander-focused public health interventions including DA-CPR, CPR training programs, and the CC application
Lee 2020 (OHCA) ¹¹³	Citywide interventions including (1) mandatory CPR and AED training, DA-CPR, and the establishment and actions of the Daegu cc and (2) public-access defibrillation program; team CPR program; dual-patch system; standardized post-CA treatment; education program for medical staff; regional OHCA registry; and public reporting and feedback to provinces, hospitals, and EMTs
Kim 2020 (OHCA) ^{111,112}	Implementing the PDSA model for quality improvement: (1) bystander CPR education and dispatcher training, (2) regular skills training sessions for EMTs, (3) detailed data collection instrument, (4) medical director assignment
Kim 2020 (OHCA) ¹¹⁰	A multidisciplinary approach including (1) re-education of BLS, (2) simulation training for real- time medical direction via video call, (3) 2-tier dispatch
Auricchio 2020 (OHCA) ¹⁰⁶	Statewide initiatives including recording of OHCAs; initiatives on AED density, bystander and layperson recruitment; first responder network
Nehme 2021 (OHCA) ¹¹⁸	High-performance CPR focusing on team dynamics and communication, with emphasis on optimizing resuscitation flow and minimizing delays
Dong 2022 (OHCA) ¹⁰⁸	Citywide quality improvement program consisting of (1) standardized ambulance treatment protocol adopted, (2) ambulance crew targeted training, (3) quality monitoring, feedback, and post-event debriefing
Kim 2022 (OHCA) ¹¹¹	SALS protocol incorporating changes in CPR assistance and coaching by physicians via real-time video calls
Lin 2022 (OHCA) ^{115,117}	Citywide bundle initiative including (1) commencement of medical direction and public-access defibrillation project, (2) digitized Utstein-based registry, (3) public involvement and continuous QA process, (4) proactive CPR promotion and PAD, (5) built and implemented culture of excellence and smart technology
McCoy 2023 (IHCA) ¹¹⁷	Bundled intervention on IHCA survival in patients on centralized telemetry: (1) telemetry hotline for telemetry technicians t o reach nursing staff, (2) empowerment of telemetry technicians to directly activate the IHCA response team, and (3) standardized escalation system for automated critical alerts within the nursing mobile phone system
Freedman 2023 (IHCA) ¹⁰⁹	Bundled intervention on IHCA including EMC restructuring, CPR coach, replacing defibrillators, defibrillator data review, training program, metronomes, code documentation, debriefing, and event reviews
Li 2023 (OHCA) ¹¹⁴	RQI HeartCode Complete program, designed to enhance CPR training by using real-time feedback manikins
Lyngby 2023 (OHCA) ¹¹⁶	Real-time feedback displayed on the defibrillator screen, presenting compression depth, compression rate, and audible rate guidance

7 Table 4. Interventions in Included Studies

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

Study (author, year, setting)	Interventions
Riyapan 2024 (OHCA) ¹¹⁹	CQI low-dose, high-frequency training interventions included advanced airway management, high-performance CPR, and postevent debriefing with video recording
Vaillancourt 2024 (IHCA) ¹²⁰	Implementation of medical directive allowing nurses to use defibrillators in AED mode for IHCA

AED indicates automated external defibrillator; BLS, basic life support; CPR, cardiopulmonary resuscitation; CQI,

1 2 3 4 5 Continuous Quality Improvement; DA-CPR, dispatcher-assisted cardiopulmonary resuscitation; EMC, Emergency

Management Committee; EMT, emergency medical technician; IHCA, in-hospital cardiac arrest; OHCA, out-of-

hospital cardiac arrest; PAD, public access defibrillation; PDSA, Plan-Do-Study-Act; RQI, Resuscitation Quality

Improvement; and SALS, Smart Advanced Life Support.

Survival with favorable neurologic outcome at discharge	Survival to hospital discharge	Skill performance in actual resuscitations	Survival to admission	System-level variables
1 cluster-randomized trial showed survival with favorable neurologic outcome at discharge was not higher after interventions ¹³⁰	1 cluster-randomized trial showed survival to hospital discharge was not higher after interventions ¹³⁰	1 cluster-randomized trial showed that rescuer skill performance improved after interventions ¹³⁰	1 cluster-randomized trial showed survival to admission was not higher after interventions ¹³⁰	
17 non-RCTs showed significantly higher survival with favorable neurologic outcome at discharge after interventions ^{33,110,111,113,115,122,125-} 128,131,133,134,139,140,142,143	20 non-RCTs showed significantly higher survival to hospital discharge after interventions. ^{33,106,107,111,113,} 115,118,122,125-128,131,133- 135,137,139,140,143	16 non-RCTs reported that improved rescuer skill performance after interventions. ^{31,33,110,114} ,116,118,120,123,128,131- 133,135,136,141,145	3 non-RCTs showed significantly higher survival to admission after interventions. ^{126,137,140}	18 non-RCTs achieved all or partial goals from individual interventions or improved specific system-level variables (including rate of bystander CPR or AED, rate of prehospital or in-hospital hypothermic temperature control,
7 non-RCT showed no significant improvement after interventions. ^{106,112,123,124,129,135,144}	14 non-RCTs showed no significant improvement after interventions. ^{31,109,110,112,116,} 117,119,120,123,124,129,141,142,144	2 non-RCTs showed no significant improvement after interventions ^{124,138}	6 non-RCTs showed no significant improvement after interventions. ^{110,115,116,119,1} ^{29,142}	use of automatic CPR devices, CPR feedback devices, or percutaneous coronary intervention ^{106,107,110,112,113,115,116,12} , 125,126,128,129,133,134,137,139,142,144

1 Table 5. Summary of Outcomes Reported in Studies About System Interventions

2 AED indicates automated external defibrillation; CPR, cardiopulmonary resuscitation; and RCT, randomized controlled trial.

Greif 28

1

Prior Treatment Recommendations (2020)

We recommend that organizations or communities that treat cardiac arrest evaluate their
performance and target key areas with the goal to improve performance (strong recommendation,
very low-certainty evidence).

5 Treatment Recommendations (2025)

We recommend that organizations or communities that treat cardiac arrest use systemimprovement strategies to improve patient outcome (strong recommendation, very low-certainty
evidence).

9 Justification and Evidence-to-Decision Framework Highlights

10 The complete evidence-to-decision table is provided in Appendix A.

11 The EIT Task Force decided to exclude studies investigating extracorporeal CPR, which 12 were included previously, because the prevalence of extracorporeal CPR is increasing, and 13 several RCTs were reviewed in another PICOST. In making this recommendation, the task force 14 prioritized the benefits of system performance improvements, recognizing that they present no 15 known risks and hold substantial potential for positive impact. The task force recognized that the 16 evidence supporting this recommendation is derived from studies with very low certainty across 17 all evaluated outcomes, primarily due to risks of bias and inconsistencies. However, most studies 18 found that interventions to improve system performance not only improve system-level variables 19 and skill performance in actual resuscitations among rescuers, but also clinical outcomes of 20 patients with out-of-hospital or in-hospital cardiac arrest. We acknowledge that these 21 interventions demand funding, personnel, and stakeholder support to improve system 22 performance. Varying levels of resources across settings may influence the effectiveness of 23 implementing these performance improvements.

1 Knowledge Gaps

• Cost-effectiveness of individual interventions aimed at improving systems

• Feasibility of implementing community interventions across diverse resource settings

• Effects of individual and bundled interventions across diverse resource settings

5 Prehospital Critical Care for Out-of-Hospital Cardiac Arrest (EIT 6313, SysRev 2025)

6 Rationale for Review

7 The emergency medical service (EMS) system response is a critical element in the 8 pathway of care for OHCA patients.^{147,148} Prehospital critical care teams as part of a tiered EMS response are emerging.¹⁴⁹⁻¹⁵¹ These are specialists in the care of critically ill patients requiring 9 10 resuscitation,¹⁵² and they have competencies in advanced life support beyond that of standard 11 EMS teams.¹⁵³ Understanding the clinical efficacy of prehospital critical care teams may inform 12 the decision to implement this into practice. This SysRev on pre-hospital critical care teams for 13 nontraumatic OHCA¹⁵⁴ was registered in PROSPERO under the number CRD42023478216. The full CoSTR is available on the ILCOR website.¹⁵⁵ 14

15 Population, Intervention, Comparator, Outcome, and Time Frame

Population: Adults and children with OHCA and attempted resuscitation. Traumatic
 cardiac arrest was excluded.

- Intervention: Attendance of a prehospital critical care team. Prehospital critical care was
 defined as any provider with clinical competencies beyond that of standard paramedics
 using ALS algorithms and dedicated dispatch to critically ill patients.
- Comparator: Advanced life support by any other prehospital healthcare provider
- Outcomes: Clinical outcomes of survival, favorable neurological outcome, and ROSC;
- 23 resource and cost implications
- Time frame: All years to April 20, 2024

 $\ensuremath{\mathbb{O}}$ 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

Consensus on Science 1

2	Out of 15 articles included, 147-153, 156-163 no randomized studies were identified. A total of
3	1 188 287 patients were included in the non-RCTs, and 1 included children only. ¹⁵⁷ Seven studies
4	came from Japan, 3 from the UK, and 1 each from Australia, Iceland, Norway, Poland, and the
5	USA. In 14 studies prehospital critical care teams included physicians, 147-153, 156-158, 160-163
6	including specialists in emergency medicine, 148-150, 156, 157, 160, 162 anesthesia, 156, 158, 162 or
7	critical/intensive care medicine. ^{148,150,156,160,162} Four studies included specially trained critical
8	care paramedics, ^{147,159,161,162} 3 from the United Kingdom, ^{147,161,162} and 1 from Australia that
9	included solely critical-care paramedics. ¹⁵⁹ For the combined outcome of ROSC and survival to
10	hospital admission, pooled results from 6 adult non-RCTs found a benefit from prehospital
11	critical care teams. ^{147,148,150,156,160,162} A single non-RCT in pediatric OHCA enrolled 1187 patients
12	and also found an association of prehospital critical-care teams with better outcome ¹⁵⁷ (Figure
13	1).

14 Figure 1. Survival to hospital admission/return of spontaneous circulation with prehospital critical-care teams compared with standard advanced life support. 15

	-					
				Odds ratio		ds ratio
Study or Subgroup	log[OR]	SE	Weight	IV, Random, 95% Cl	IV, Rano	dom, 95% Cl
1.1.1 Adult non-traumati	c					
Barnard 2019	0.678034	0.206224	15.6%	1.97 [1.32 , 2.95]		-
Bjornsson 2021	0.14842	0.189273	16.1%	1.16 [0.80 , 1.68]		+
Bujak 2022	0.779325	0.180961	16.3%	2.18 [1.53 , 3.11]		-
Goto 2019	1.07841	0.030354	19.1%	2.94 [2.77 , 3.12]		•
Sato 2019	0.989541	0.225662	15.0%	2.69 [1.73 , 4.19]		
Von Vopelius-Feldt 2020	0.329304	0.118447	17.9%	1.39 [1.10 , 1.75]		+
Subtotal			100.0%	1.96 [1.35 , 2.82]		•
Test for overall effect: Z =	3.57 (P = 0.	0004)				
Heterogeneity: Tau ² = 0.18	8; Chi² = 62.	90, df = 5 ((P < 0.000	001); l² = 92%		
1.1.2 Paediatric						
Obara 2023	0.392042	0.160991	100.0%	1.48 [1.08 , 2.03]		
Subtotal			100.0%	1.48 [1.08 , 2.03]		•
Test for overall effect: Z =	2.44 (P = 0.	01)				
Heterogeneity: Not applica	able	-				
					⊢	
					0.01 0.1 Favours ALS	1 10 10 Favours CCT
					1 arouis ALO	1 440413 001

- 16 17 18
- ALS indicates advanced life support; and CCT, critical-care team. Adapted from Boulton et al.¹⁵³ This is an Open Access article under the CC BY 4.0 license.

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

- 1 For survival to hospital discharge, pooled results from 5 adult non-RCTs found a benefit
- from prehospital critical care teams.^{147,148,156,161,162} No study on children included this outcome 2
- 3 (Figure 2).

4 Figure 2. Survival to hospital discharge with prehospital critical-care teams compared with 5 standard advanced life support.

				Odds ratio	Odds ratio
Study or Subgroup	log[OR]	SE	Weight	IV, Random, 95% Cl	
2.1.1 Adult non-traumation	c				
Barnard 2019	0.524729	0.172575	29.6%	1.69 [1.21 , 2.37]	-
Bjornsson 2021	0.157004	0.219959	18.9%	1.17 [0.76 , 1.80]	• •
Bujak 2022	0.357674	0.296728	10.7%	1.43 [0.80 , 2.56]	
Von Vopelius-Feldt 2015	0.431782	0.280263	11.9%	1.54 [0.89 , 2.67]	
Von Vopelius-Feldt 2020	0.058269	0.17512	28.8%	1.06 [0.75 , 1.49]	+
Subtotal			100.0%	1.34 [1.10 , 1.62]	♦
Test for overall effect: Z =	2.95 (P = 0.	003)			
Heterogeneity: Tau ² = 0.00); Chi² = 4.2	7, df = 4 (F	P = 0.37);	² = 6%	
2.1.2 Paediatric					
Subtotal				Not estimable	
Test for overall effect: Not	applicable				
Heterogeneity: Not applica	able				
					0.01 0.1 1 10 100 Favours ALS Favours CCT

6 7 8 ALS indicates advanced life support; and CCT, critical care team.

Adapted from Boulton et al.¹⁵³ This is an Open Access article under the CC BY 4.0 license.

9 For survival at 30 days, pooled results from 6 adult non-RCTs found a benefit from

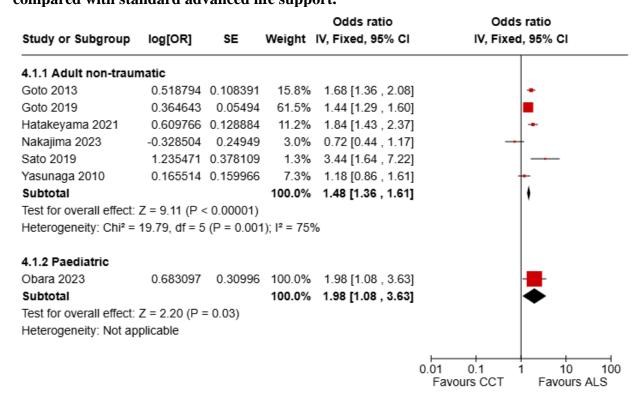
- prehospital critical care teams.^{150-153,160,163} A single non-RCT in pediatric OHCA did not find a 10
- benefit from prehospital critical care teams¹⁵⁷ (Figure 3). 11

1 Figure 3. Survival at 30 days with prehospital critical-care teams compared with standard

2 advanced life support.

Study or Subgroup	log[OR]	SE	Weight	Odds ratio IV, Random, 95% Cl	Odds IV, Randor	
3.1.1 Adult non-traur	matic					
Goto 2013	0.378436	0.064332	23.5%	1.46 [1.29 , 1.66]		•
Goto 2019	0.518794	0.040965	27.6%	1.68 [1.55 , 1.82]		•
Hatakeyama 2021	0.512824	0.115304	15.2%	1.67 [1.33 , 2.09]		•
Nakajima 2023	0.00995	0.164292	9.9%	1.01 [0.73 , 1.39]	-	-
Sato 2019	0.955511	0.31198	3.6%	2.60 [1.41 , 4.79]		
Yasunaga 2010	0.48858	0.082405	20.3%	1.63 [1.39 , 1.92]		•
Subtotal			100.0%	1.56 [1.38 , 1.76]		•
Test for overall effect:	Z = 7.09 (P	< 0.00001))			
Heterogeneity: Tau ² =	0.01; Chi ² =	: 13.90, df :	= 5 (P = 0	0.02); I² = 64%		
3.1.2 Paediatric						
Obara 2023	0.398776	0.279273	100.0%	1.49 [0.86 , 2.58]		-
Subtotal			100.0%	1.49 [0.86 , 2.58]		•
Test for overall effect:	Z = 1.43 (P	= 0.15)				
Heterogeneity: Not ap	plicable					
					0.01 0.1 1 Favours CCT	10 100 Favours ALS

3 4 5 ALS indicates advanced life support; and CCT, critical care team. Adapted from Boulton et al.¹⁵³ This is an Open Access article under the CC BY 4.0 license.


6 Favorable neurological outcome at hospital discharge was addressed in 1 nontraumatic

- 7 OHCA study enrolling 973 patients, showing no significant difference (OR 1.35, 95% CI 0.71-
- 8 2.60).¹⁵⁸ No pediatric study addressed this outcome.

9 Favorable neurological outcome at 30 days was addressed in 6 nontraumatic OHCA

- studies, which found a benefit from prehospital critical-care teams.^{150-153,160,163} A single non-RCT 10
- in pediatric OHCA found an association of prehospital critical-care teams with better outcome¹⁵⁷ 11
- 12 (Figure 4).

Figure 4. Favorable neurological outcome at 30 days with prehospital critical-care teams
 compared with standard advanced life support.

3 4

ALS indicates advanced life support, and CCT, critical-care team.

5 Adapted from Boulton et al.¹⁵³ This is an Open Access article under the CC BY 4.0 license.

6 Treatment Recommendations (2025)

- 7 We recommend that prehospital critical-care teams attend adults with nontraumatic, out-
- 8 of-hospital cardiac arrest within EMS systems with sufficient resource infrastructure (weak
- 9 recommendation, low certainty of evidence).
- 10 We suggest that prehospital critical-care teams attend children with out-of-hospital
- 11 cardiac arrest within EMS systems with sufficient resource infrastructure (weak
- 12 recommendation, very low certainty of evidence).

13 Justification and Evidence-to-Decision Framework Highlights

- 14 The complete evidence-to-decision table is provided in Appendix A.
- 15 The EIT Task Force has made a recommendation alongside low-certainty evidence for
- 16 adults in light of consistent benefits across clinical outcome from a variety of different healthcare

1	systems. One study including 1187 children also found benefit; hence the EIT Task Force also
2	made a treatment recommendation favoring prehospital critical-care teams for children.
3	This SysRev demonstrated that many settings have already implemented prehospital
4	critical-care teams. Expanding prehospital critical-care services and implementing these services
5	in other healthcare systems is likely to incur additional resources, training, and EMS
6	infrastructure costs, and hence may not be universally available.
7	Knowledge Gaps
8	• RCTs investigating prehospital critical-care teams for OHCA are needed.
9	• Evidence about children with out-of-hospital cardiac arrest is based on only 1 study.
10	• Which patient groups would benefit most from prehospital critical-care teams
11	• Optimal composition of prehospital critical-care teams, their professional background,
12	and training requirements
13	• Associated resource costs, cost-effectiveness, impact on health equity, and feasibility of
14	implementation of prehospital critical-care teams
15	CPR Coaching During Adult and Pediatric Cardiac Arrest (EIT 6314, SysRev 2025)
16	Rationale for Review
17	Despite CPR training, adherence to guidelines is poor during cardiac arrest. Visual
18	feedback devices during CPR can improve chest compression (CC) quality, but compliance for
19	CC depth is still <40%. ¹⁶⁴ To implement well-known evidence into clinical practice, the
20	integration of a CPR coach within the resuscitation team has been proposed. ^{165,166} A CPR coach
21	is a resuscitation team member whose primary responsibility is to provide real-time coaching on
22	resuscitation quality. The EIT Task Force initiated this SysRev focusing on coaching where the
23	coach is an active resuscitation team member. The SysRev was registered on PROSPERO
24	(CRD42017080475), and the full CoSTR is available on the ILCOR website. ¹⁶⁷
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on

Resuscitation.

Greif 35

1	Population, Intervention, Comparator, Outcome, and Time Frame
2	• Population: Healthcare teams managing adult or pediatric cardiac arrest
3	• Intervention: CPR coach as a resuscitation team member
4	• Comparator: No CPR coach on the resuscitation team
5	• Outcomes: Simulation-based clinical skills: CPR skill performance, adherence to
6	guidelines, teamwork, provider workload
7	- Real-life clinical performance: CPR skill performance, adherence to guidelines
8	- Patient survival: ROSC, survival to hospital discharge or 30 days, survival with
9	favorable neurological outcome, survival beyond discharge or 30 days
10	• Time frame: All years to October 11, 2024
11	Consensus on Science
12	We identified 7 studies investigating the use of a CPR coach versus no use of a CPR
13	coach as a resuscitation team member. ^{165,168-173} One study investigated use of CPR coaches in a
14	clinical setting, ¹⁷⁰ and 6 were simulation studies. ^{165,168,169,171-173} Five of the simulation studies
15	were based on the same randomized controlled trial. ^{165,169,171-173} The outcomes of the included
16	studies are presented in Table 6. The outcomes of adherence to guidelines in a clinical setting
17	and patient survival were not reported in any studies.
18	

Outcome	Evidence with CPR coach implementation	Certainty of evidence
Clinical CPR performance	CCF at adequate depth improved from 69.8%-80.4%. Compression depth increased from 43.6mm to 47.2mm. Time to defibrillation decreased from 13.2sec-7.2sec. ¹⁷⁰	very low (downgraded for risk of bias, indirectness, imprecision)
CPR performance in a simulated setting	Higher fraction of excellent chest compressions (63% versus 31%; Diff, 31.8 [17.7, 45.9]), higher fraction of compressions within guideline recommendations (38.0% versus 69.5%; Diff, 31.5 [15.7, 47.4]), higher guideline compliance rate (88% versus 80%; P =0.07), higher CCF (82% versus 77%; P =0.04) for coached versus noncoached teams. ¹⁶⁵ Shorter total mean pause duration (98.6sec versus 120.85sec; 95% CI of mean diff 0.6 sec-43.9 sec, P =0.04). ¹⁷² Shorter time to backboard placement (22 sec versus 55 sec; P =0.02). No difference in: compression rate, no-flow time, time to first epinephrine, time to first shock, perishock pause duration. ¹⁶⁸	very low (downgraded for risk of bias, imprecision) no significantly higher
Adherence to guidelines in a simulated setting	Clinical performance tool scores were higher (73.4 versus 68.3; Diff, 5.2 points; 95% CI, 1.0-9.3; <i>P</i> =0.016). ¹⁶⁹	low (downgraded for risk of bias, indirectness imprecision)
Teamwork in a simulated setting	Coached teams used more words/min (160 versus 134; P <0.05) driven by more directives on chest compression rate and depth, and positive verbal cues from the CPR coach to the team; team leaders and others said fewer words/min (70 versus 88 and 30 versus 46; P <0.05). ¹⁷¹	very low (downgraded for risk of bias, indirectness, imprecision)
Workload in a simulated setting	One study found no significant difference for overall workload for team leaders; chest compressors had lower mental demand but higher physical demand in coached teams. ¹⁷³ Another study showed no differences on any NASA Task Load index subscales for team leader. ¹⁶⁸	very low (downgraded for risk of bias, inconsistency, and indirectness)

Table 6. Study Outcomes and Certainty of Evidence for Use by CPR Coaches During Resuscitation

2 CCF indicates chest compression fraction; Diff, difference; NASA, National Aeronautics and Space Administration.

1

2	We recommend considering the inclusion of a CPR Coach as a member of the
3	resuscitation team during cardiac arrest resuscitation in settings with adequate staffing (weak
4	recommendation, very low-certainty evidence).
5	Justification and Evidence-to-Decision Framework Highlights
6	The complete evidence-to-decision table is provided in Appendix A.
7	CPR Coaches were generally associated with improved outcomes, and no harmful effects
8	were observed. Use of a CPR Coach may be considered a specific way of using shared
9	leadership in resuscitation teams. Shared leadership has been suggested to be useful in several
10	studies on IHCA. ¹⁷⁴⁻¹⁷⁶ CPR Coaches are already implemented as part of the resuscitation teams
11	in many hospitals, ¹⁷⁷ suggesting that staff members are often available to fill this role. ¹⁷⁴ This
12	may differ in low-resource settings and out-of-hospital settings.
13	Most of the evidence was based on 1 randomized simulation-based trial. ¹⁷³
14	Knowledge Gaps
15	• Identified evidence was limited (from 1 RCT simulation, ¹⁶⁵ 1 clinical observational
16	study, ¹⁷⁰ 1 pilot RCT simulation ¹⁶⁸). Further evidence on CPR Coaching from RCTs is
17	needed.
18	• Effect of CPR coaches on real cardiac arrest and patient survival outcome
19	• Effect of CPR coaches on prespecified subgroups (eg adult versus pediatric patients,
20	trained versus untrained CPR Coaches, use of CPR feedback devices versus no CPR
21	feedback devices)
22	• Optimal role and effectiveness of a CPR Coach in out-of-hospital settings and in-hospital
23	settings
24	• Cost-effectiveness or utilization of CPR Coaches in limited resource settings

© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1 Treatment Recommendations (2025)

Out-of-Hospital Cardiac Arrest Termination of Resuscitation Rules (EIT 6303, SysRev ADOLOPMENT 2025)

3 Rationale for Review

4	A systematic review on prehospital TOR rules was first published as part of the 2020
5	ILCOR CoSTR. ¹⁷⁸ Subsequently, a systematic review including these findings was published,
6	including a literature update in January 2024 that reviewed additional literature on cost-
7	effectiveness. ¹⁷⁹ The EIT Task Force conducted an adolopment of the recently published review,
8	searched recent literature from January 2023 to October 2024, and conducted data extraction and
9	risk of bias assessment for any paper published after the initial review. We considered papers on
10	prehospital TOR rules used in the prehospital setting. Studies addressing TOR for patients
11	arriving at the emergency department by ambulance in-hospital TOR were excluded. The
12	adoloped review was registered in PROSPERO (CRD42019131010), and the full online CoSTR
13	is available on the ILCOR website. ¹⁸⁰
10	
14	Population, Intervention, Comparator, Outcome, and Time Frame
	 <i>Population, Intervention, Comparator, Outcome, and Time Frame</i> Population: Adults and children in cardiac arrest who do not achieve ROSC in the out-of-
14	
14 15	• Population: Adults and children in cardiac arrest who do not achieve ROSC in the out-of-
14 15 16	• Population: Adults and children in cardiac arrest who do not achieve ROSC in the out-of- hospital environment.
14 15 16 17	 Population: Adults and children in cardiac arrest who do not achieve ROSC in the out-of-hospital environment. Intervention: (Index test) TOR rules.
14 15 16 17 18	 Population: Adults and children in cardiac arrest who do not achieve ROSC in the out-of-hospital environment. Intervention: (Index test) TOR rules. Comparator: (Reference standard) In-hospital outcome: survival, favorable or
14 15 16 17 18 19	 Population: Adults and children in cardiac arrest who do not achieve ROSC in the out-of-hospital environment. Intervention: (Index test) TOR rules. Comparator: (Reference standard) In-hospital outcome: survival, favorable or unfavorable neurologic outcome

1 Consensus on Science

The 2020 ILCOR CoSTR identified several studies addressing the use of TOR rules, but
a meta-analysis was not possible because of high risk of bias and heterogeneity.¹⁷⁸
The updated review published in 2024 identified 10 new observational studies on the
validation of different TOR rules from historical cohorts.¹⁸¹⁻¹⁹⁰ These studies, grouped by
outcome reported, are summarized in Tables 7 through 9. Several studies validated more than 1
score or applied the same score in different cohorts.

1 Table 7. Prediction of No Return of Spontaneous Circulation

Study	TOR Rule	Population	ТР	FP	FN	TN	Sensitivity	Specificity
Harris 2021 ¹⁸²	MIEMS	Child (trauma, age 0-17)	27	4	71	36	0.28 [0.19- 0.37]	0.90 [0.76- 0.97]
Harris 2021 ¹⁸²	MIEMS	Child (trauma, age 0-14)	39	4	107	50	0.27 [0.20- 0.35]	0.93 [0.82- 0.98]
Harris 2021 ¹⁸²	MIEMS	Child (medical, age 0-17)	44	1	1028	322	0.04 [0.03- 0.05]	1.00 [0.98- 1.00]

2 FP indicates false positive; FN, false negative; MIEMS, Maryland Institute for Emergency Medical Services Systems; TN, true negative; and TP, true positive.

3 Table 8. Prediction of Death in Hospital

Study	TOR Rule	Population	ТР	FP	FN	TN	Sensitivity	Specificity
Park 2023189	KoCARC 1	Adult	668	7	1039	113	0.39 [0.37-	0.94 [0.88-
		(medical)					0.41]	0.98]
Park 2023189	KoCARC 2	Adult (medical)	687	11	1020	109	0.40 [0.38- 0.43]	0.91 [0.84- 0.95]
Park 2023189	KoCARC 3	Adult (medical)	524	6	1183	114	0.31 [0.29- 0.33]	0.95 [0.89- 0.98]
Hreinsson 2020 ¹⁸⁴	uTOR	Adult (cardiac)	202	0	252	113	0.44 [0.40- 0.49]	1.00 [0.97- 1.00]
Hsu 2022 ¹⁸⁵	uTOR	Adult (medical)	40904	657	10873	2630	0.79 [0.79- 0.79]	0.80 [0.79- 0.81
Hreinsson 2020 ¹⁸⁴	ALS	Adult (cardiac)	35	0	414	113	0.08 [0.05- 0.11]	1.00 [0.97- 1.00]
Hsu 2022 ¹⁸⁵	ALS	Adult (medical)	25164	385	26613	2902	0.49 [0.48- 0.49]	0.88 [0.87- 0.89]
Smits 2023 ¹⁹⁰	ALS	Adult (cardiac, male)	3834	6	15240	2728	0.20 [0.20- 0.21]	1.00 [1.00- 1.00]
Smits 2023 ¹⁹⁰	ALS	Adult (cardiac, female)	2301	3	7704	764	0.23 [0.22- 0.24]	1.00 [0.99- 1.00]
Matsui 2023 ¹⁸⁸	ALS	Child (medical & trauma)	299	21	1319	190	0.18 [0.17- 0.20]	0.90 [0.85- 0.94]
Matsui 2023 ¹⁸⁸	BLS	Child (medical & trauma)	5474	440	869	657	0.86 [0.85- 0.87]	0.60 [0.57- 0.63]
Hsu 2022 ¹⁸⁵	GOTO 1	Adult (medical)	27856	283	23921	3004	0.54 [0.53- 0.54]	0.91 [0.90- 0.92]

Study	TOR Rule	Population	ТР	FP	FN	TN	Sensitivity	Specificity
Jabre 2016 ¹⁸⁶	JABRE	Adult (cardiac)	2799	1	3435	728	0.45 [0.44-	1.00 [0.99-
							0.46]	1.00]
Hreinsson	JABRE	Adult (cardiac)	215	0	240	113	0.47 [0.43-	1.00 [0.97-
2020 ¹⁸⁴							0.52]	1.00]
Glober 2020 ¹⁸¹	Glober 1	Adult (medical	290	0	3407	344	0.08 [0.07-	1.00 [0.99-
		& trauma)					0.09]	1.00]
House 2018 ¹⁸³	PEA	Adult (cardiac,	829	3	955	328	0.46 [0.44-	0.99 [0.97-
		transported)					0.49]	1.00]

1 2

ALS indicates Advanced Life Support; BLS, Basic Life Support; FN, false negative, FP, false positive; KoCARC, Korean Cardiac Arrest Research Consortium;

PEA, Pulseless Electrical Activity; TN, true negative; TP, true positive; and uTOR, Universal Termination of Resuscitation.

3 Table 9. Death or Survival With Unfavorable Neurological Outcome

Study	TOR Rule	Population	ТР	FP	FN	TN	Sensitivity	Specificity
Lin 2022 ¹⁸⁷	uTOR	Adult (2015 cohort)	738	19	113	13	0.87 [0.84- 0.89]	0.41 [0.24-0.59]
Lin 2022 ¹⁸⁷	uTOR	Adult (2020 cohort)	430	8	116	18	0.79 [0.75- 0.82]	0.69 [0.48- 0.86]
Lin 2022 ¹⁸⁷	ALS	Adult (2015 cohort)	122	2	231	22	0.35 [0.30- 0.40]	0.92 [0.73- 0.99]
Lin 2022 ¹⁸⁷	ALS	Adult (2020 cohort)	104	0	279	24	0.27 [0.23- 0.32]	1.00 [0.85- 1.00]
Park 2023189	KoCARC 1	Adult (medical)	672	3	1074	78	0.39 [0.36- 0.41]	0.96 [0.90- 0.99]
Park 2023 ¹⁸⁹	KoCARC 2	Adult (medical)	695	3	1051	78	0.40 [0.38- 0.42]	0.96 [0.90- 0.99]
Park 2023 ¹⁸⁹	KoCARC 3	Adult (medical)	527	3	1183	78	0.31 [0.29- 0.33]	0.96 [0.90- 0.99]

4 5

 ALS indicates Advanced Life Support; FN, false negative, FP, false positive; KoCARC, Korean Cardiac Arrest Research Consortium; TN, true negative; TP, true

positive; and uTOR, Universal Termination of Resuscitation.

Following the 2024 publication, we identified 3 additional studies, 2 investigating cost effectiveness of different TOR rules^{191,192} and 1 on the derivation of a new TOR rule for pediatric
 OHCA.¹⁹³

4 One study estimated quality-adjusted life years for survivors following OHCA in the 5 United Kingdom.¹⁹¹ The most cost-effective strategies were the European Resuscitation Council 6 TOR rule (incremental cost-effectiveness ratio (ICER) of £8,111), the Korean Cardiac Arrest 7 Research Consortium 2 (KOC 2) TOR rule (ICER of £17,548), and the universal Basic Life Support (BLS) TOR rule (ICER of £19,498,216).¹⁹¹ The KOC 2 TOR rule was cost-effective at 8 9 the established cost-effectiveness threshold of £20,000-£30,000 per quality-adjusted life year 10 (providing the most quality-adjusted life years being below the established ICER threshold). 11 Another study investigated the cost-effectiveness of implementation of TOR rules in 12 Singapore based on cases terminated in the field and all cases eligible for TOR but transported to 13 hospital.¹⁹² They found that terminating CPR on all patients eligible for the TOR rule would 14 result in 31 additional deaths per 10,000 patients compared with no TOR. If TOR is exercised for 15 every eligible case, it could save approximately \$400,440 per quality-adjusted life year loss 16 compared with no TOR, and \$821,151 per quality-adjusted life year loss compared with the 17 actual observed rate of TOR in the field.

18 TOR Rules for Pediatric Out-of-Hospital Cardiac Arrest

We identified 3 studies assessing TOR rules for the prediction of death in
children.^{182,188,193} One study applied adult TOR rules in children,¹⁸⁸ another, a derivation of the
Maryland Institute for Emergency Medical Services Systems (MIEMSS) score,¹⁸² and the third, a
derivation of the pediatric TOR score.¹⁹³ All studies were downgraded for risk of bias,
imprecision, and indirectness, and the evidence was rated as very low certainty.

1	A new pediatric TOR rule to predict no survival or unfavorable neurological outcome
2	was included, ¹⁹³ which was derived from a dataset spanning 2013-2019 and validated during
3	2020-2022 (including the period of COVID-19). The specificity was 99.1% (sensitivity 29.6%)
4	in the derivation cohort and 99.7% in the validation cohort (sensitivity 30.4%).
5	Prior Treatment Recommendations (2020)
6	We conditionally recommend the use of TOR rules to assist clinicians in deciding
7	whether to discontinue resuscitation efforts out of hospital or to transport to hospital with
8	ongoing CPR (conditional recommendation/very low-certainty evidence).
9	Treatment Recommendations (2025)
10	For adult out-of-hospital cardiac arrest, we conditionally recommend that emergency
11	medical service systems may implement termination of resuscitation (TOR) rules to assist
12	clinicians in deciding whether to discontinue resuscitation efforts at the scene or to transport to
13	hospital with ongoing CPR. We suggest that TOR rules may only be implemented following
14	local validation of the TOR rule with acceptable specificity considering local culture, values, and
15	setting (conditional recommendation, very low-certainty evidence).
16	For pediatric out-of-hospital cardiac arrest because of insufficient evidence, we suggest
17	against the use of TOR rules to decide whether to terminate resuscitation efforts (conditional
18	recommendation, very low-certainty evidence).
19	Justification and Evidence-to-Decision Framework Highlights
20	The complete evidence-to-decision table is provided in Appendix A.
21	The task force made a conditional recommendation for the use of TOR rules for adult
22	OHCA in line with the last CoSTR on TOR. The values in making this recommendation remain
23	largely unchanged. The certainty of evidence is limited by a lack of clinical validation studies.
24	The task force recognizes that application of TOR rules may result in missed survivors but has
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

the potential to reduce variation in practice associated with clinician judgment and prevent
 premature terminations by clinicians.

In making this recommendation, the EIT Task Force recognizes variation in patient values, resources available, and performance of TOR rules in different settings, and that the performance of TOR rules varies depending on the EMS system, the setting, and the survival rate in the population. Therefore, TOR rules should not be implemented without assessing the local validity of a TOR rule, and the validity should be reassessed as survival outcome changes over time.

9 The task force recognizes that TOR rules are already implemented in some EMS systems. 10 In settings where EMS personnel will transport all patients to the hospital, the use of TOR rules 11 may reduce costs. In contrast, the potential economic benefit in EMS systems with physician-12 staffed ambulances already making decisions about terminating CPR may be absent. 13 The task force considered pediatric OHCA separately and acknowledged that missed 14 survivors in this population may be valued differently from the adult population. Several missed

15 survivors were seen when applying adult TOR rules to children, and the 2 TOR rules derived

16 specifically for children have yet to be externally validated.

17 Knowledge Gaps

- Accuracy of TOR rules in clinical practice
- Compliance with out-of-hospital TOR rules currently in use
- Evidence-based implementation strategies for TOR rules for EMS
- Societal perceptions and acceptability of TOR rules
- Validation of TOR rules in children
- Impact of TOR rules on non-heart-beating organ donation
- Risk associated with emergent transport of futile cases with ongoing resuscitation

1 Community Initiatives to Promote BLS Implementation (EIT 6306, ScopRev 2025)

2 Rationale for Review

3	Rapid BLS interventions significantly increase survival rates and improve neurological
4	outcome for OHCA patients. Various community-based initiatives have emerged, ranging from
5	dispatcher-assisted CPR to public access defibrillation programs, AED distribution,
6	simplification of CPR techniques, and applications locating first responders and AEDs. ¹⁹⁴⁻¹⁹⁷ The
7	impact of such initiatives on BLS implementation is less clear, especially regarding public
8	education and training. Given these uncertainties, the EIT Task Force undertook a ScopRev of
9	this topic. The full report of this ScopRev is available on the ILCOR website. ¹⁹⁸
10	Population, Intervention, Comparator, Outcome, and Time Frame
11	• Population: People who have an out-of-hospital cardiac arrest
12	• Intervention (exposure): Community initiatives to promote BLS implementation
13	Comparator: Current practice
14	• Outcomes: Survival to hospital discharge with good neurological outcome, survival to
15	hospital discharge, ROSC, time to first compressions, bystander CPR rate, and proportion
16	of population trained.
17	• Time frame: January 1, 2019, to July 31, 2024
18	Summary of Evidence
19	The scoping review included 21 studies, ^{133,199-218} conducted in the United States
20	(47.6%), ^{199-205,210,217} Denmark (23.8%), ^{206,211,212,218} Korea (19.0%), ^{133,214,215} Japan (4.8%), ²¹³
21	Singapore (4.8%), ²¹⁶ UK (4.8%), ²⁰⁹ and China (4.8%). ²⁰⁸ Design included cohort studies
22	(42.9%), ^{200,202,205,206,209-213} before-and-after studies (28.6%), ^{133,200,207,208,216,217} cross-sectional
23	studies (23.8%), ^{203,214,215,218} RCT (4.8%), ²⁰⁴ and 1 non-randomized controlled trial (4.8%). ¹⁹⁹
24	More than half were prospective (57.1%), ^{133,199,203,204,206,208,211-214,216,218} and the others were
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

retrospective (42.9%).^{200-202,207,209,210,215,217} All studies involved adult OHCA, with interventions
 implemented in workplaces, schools, government offices, public events, and shared community
 spaces.

4		The community initiatives, summarized in Table 10, were grouped into 3 categories:
5	1.	Community CPR training programs ([n=11): ^{200,201,203-206,210-212,216,217} (52.3% of studies)]
б	2.	Mass-media campaigns $[(n=1):^{199} (4.8\%)]$ on public awareness through media outlets
7	3.	Bundle interventions [(n=9): ^{133,202,207-209,213-215,218} (42.9% of studies)], defined as %
8		efforts combining CPR training with other community-based strategies (eg, public
9		awareness campaigns, guideline implementation, legislative changes, and mandatory
10		training for driver's license applicants).
11		Time to first compressions was not reported as an outcome in any of these studies.
12		The full study characteristics and detailed results are provided in supplement Table S2.

13 Table 10. Community Initiatives to Promote BLS Implementat

Outcome type	Community CPR training programs (n=11) ^{200,201,203-206,210-} 212,216,217	Mass-media campaigns (n=1) ¹⁹⁹	Bundle interventions (n=9) ^{133,202,207-209,213-215,218}
Bystander CPR rate	7 studies reported an increase ^{200,201,203,210-212,216}	Reported increase following television public service announcements	Reported increase in 6 studies ^{133,208,209,214,215,218} of combinations of instructor-led training, guideline implementation, and public initiatives
	3 studies reported no change ^{204,206,217}		3 studies reported no change ^{202,207,213}
Proportion of population trained	3 studies, all reporting increase ^{200,203,206}		3 studies, all reporting increase ^{133,208,213}
ROSC	2 studies, ^{216,217} 1 reported increase ²¹⁶		1 study reporting increase ²⁰⁸
Survival to	2 studies reported increase ^{205,216}		1 study reported increase ²⁰⁸
hospital discharge after instructor- led training	4 studies reported no change ^{201,211,212,217}		1 study reported no increase ²¹³
Survival	1 study reported increase ²¹⁰		
with good	2 studies reported no change ^{205,212}		1 study reported no change ²¹³

Outcome type	Community CPR training programs (n=11) ^{200,201,203-206,210-} 212,216,217	Mass-media campaigns (n=1) ¹⁹⁹	Bundle interventions (n=9) ^{133,202,207-209,213-215,218}
neurological outcome after instructor- led training			

1 Task Force Insights

2 Initially, the EIT Task Force refined the inclusion and exclusion criteria to avoid overlap 3 with other more specific PICOSTs. Therefore, we excluded studies on public access 4 defibrillation programs, dispatched or telephone CPR and apps, the impact of social or economic 5 factors on bystander engagement, and the effect of different CPR techniques or protocols 6 including guideline changes. 7 Findings strongly suggest that community initiatives are effective and able to improve 8 response to OHCA. However, for patient outcomes such as survival and neurological outcome, 9 the results did not clearly favor the intervention. 10 In 2020 the focus of this PICOST was changed to investigate system interventions in 11 general, which resulted in a scoping review,²¹⁹ subsequently updated for this CoSTR. However, 12 the EIT Task Force values community initiatives to promote BLS implementation as highly 13 important because the identified studies reported positive signals without any negative or 14 detrimental effects. Thus, in addition to maintaining the existing treatment recommendation from 15 2015, the EIT Task Force generated a good practice statement in 2025 for this PICOST.

16 Treatment Recommendations (2015 and 2025)

17 We recommend implementation of resuscitation guidelines within organizations that

18 provide care for patients in cardiac arrest in any setting (strong recommendation, very low-

19 certainty evidence).

- 20 We propose that community initiatives to promote BLS implementation should be
- 21 endorsed and supported (good practice statement).

1	Knowledge Gaps
2	• Effect of community initiatives to promote BLS implementation in more diverse
3	geographic areas, including low resource settings
4	• Effect of community initiatives to promote BLS implementation on neonatal and
5	pediatric resuscitations
6	• More well-designed RCTs are needed to report key patient outcome and enable a
7	systematic review
8	• Effect of public campaigns such as World Restart A Heart in regions beyond the United
9	Kingdom
10	• Influence of specific legal regulations on CPR uptake in countries other than China
11	• How specific laws and regulations affect community response to cardiac arrest
12	• Cost-effectiveness of each intervention for BLS implementation, and its specific impact
13	on clinical outcomes
14	Family Presence in Adult Resuscitation (EIT 6300, SysRev 2022, EvUp 2025)
15	A SysRev was conducted for 2022, ²²⁰ and details of that review can be found in the 2022
16	CoSTR summary. ^{12,13} The complete EvUp is provided in Appendix B.
17	Population, Intervention, Comparator, Outcome, and Time Frame
18	• Population: Adults requiring resuscitation in any setting
19	• Intervention: Family presence during resuscitation
20	Comparator: No family presence during resuscitation
21	• Outcomes: patient outcomes (short- and long-term), family-centered outcomes (short-
22	and long-term psychological stress, perception of the resuscitation), and health care
23	provider-centered outcomes (psychological stress, perception of the resuscitation).
24	• Time frame: May 10, 2022, to April 28, 2024

1 Summary of Evidence

The evidence update identified 7 new primary studies²²¹⁻²²⁷ and 2 systematic
reviews.^{228,229} Patient outcomes were lacking. A dedicated family support role led to a more
positive view of family presence. Family member outcomes demonstrated mixed positive and
negative responses. Given the number of new studies, an escalation to a new SysRev might be
considered.

7 Treatment Recommendations (2022)

8 We suggest that family members be provided with the option to be present during in-9 hospital adult resuscitation from cardiac arrest (weak recommendation; very low–certainty 10 evidence).

We suggest that family members be provided with the option to be present during out-ofhospital adult resuscitation from cardiac arrest acknowledging that providers are often not able to control this (weak recommendation; very low-certainty evidence).

Policies or protocols about family presence during resuscitation should be developed to
guide and support health care professional decision-making (good practice statement).

When implementing family presence procedures, healthcare providers should receive education about family presence during adult cardiac arrest resuscitation, including how to manage these stressful situations, family distress and their own responses to these situations (good practice statement).

20 Cardiac Arrest Centers (EIT 6301, SysRev 2024, EvUp 2025)

A SysRev was conducted in 2024,²³⁰ and details of that review can be found in the 2024
 CoSTR summary.^{231,232} The complete EvUp is provided in Appendix B.

23 Population, Intervention, Comparator, Outcome, and Time Frame

• Population: Adults with attempted resuscitation after nontraumatic IHCA or OHCA

1	• Intervention: Care at a specialized cardiac arrest center
2	• Comparator: Care in an institute not designated as a specialized cardiac arrest center
3	• Outcomes: Survival with favorable neurological outcome at 30 days and at hospital
4	discharge; survival at 30 days and at hospital discharge; ROSC post-hospital admission
5	for patients with ongoing CPR.
6	• Time frame: December 31, 2023, to November 18, 2024
7	Summary of Evidence
8	Three new observational studies were found in this EvUp. ²³³⁻²³⁵ The new data does not
9	warrant a new SysRev.
10	Treatment Recommendations (2024)
11	We suggest adults with OHCA should be cared for in cardiac arrest centers (weak
12	recommendation, very low-certainty evidence).
13	Technology to Summon Providers (EIT 6302, EvUp)
14	Population, Intervention, Comparator, Outcome, and Time Frame
15	• Population: Adults and children with OHCA
16	• Intervention: Having a citizen CPR responder notified of the event via mobile technology
17	or social media.
18	Comparator: No such notification
19	• Outcomes:
20	- Patient survival to hospital discharge with good neurological function, 30-day
21	survival, survival to hospital discharge, Hospital admission, ROSC
22	- Non-patient–bystander CPR rates, time to first compression, response time, activation
23	rate, system reliability, user satisfaction, cost-effectiveness

1	• Time frame: October 21, 2021, to October 27, 2024
2	Summary of Evidence
3	A SysRev was conducted in 2020, and details of that review can be found in the 2020
4	CoSTR; an EvUp was done in 2021.9,10,236,237 The complete 2025 EvUp is provided in Appendix
5	B. Given the absence of RCTs, the 4 newly identified observational studies do not warrant a new
6	SysRev. ²³⁸⁻²⁴¹
7	Treatment Recommendations (2020)
8	We recommend that citizen/individuals who are in close proximity to a suspected out-of-
9	hospital cardiac arrest event and are willing to be engaged/notified by a smartphone app with
10	mobile positioning system or text message-alert system should be notified (strong
11	recommendation, very low-certainty evidence).
12	Willingness to Provide CPR/AED (EIT 6304, EvUp)
13	Population, Intervention, Comparator, Outcome, and Time Frame
14	• Population: Bystanders (laypersons) in actual situation of adult or pediatric patients with
15	
	OHCA
16	OHCAIntervention (Exposure): Factors (barriers or facilitators) that affected the willingness of
16 17	
	• Intervention (Exposure): Factors (barriers or facilitators) that affected the willingness of
17	• Intervention (Exposure): Factors (barriers or facilitators) that affected the willingness of bystanders to perform CPR and/or use an AED
17 18	 Intervention (Exposure): Factors (barriers or facilitators) that affected the willingness of bystanders to perform CPR and/or use an AED Comparator: No such factor or any other factor that affected the willingness of bystanders
17 18 19	 Intervention (Exposure): Factors (barriers or facilitators) that affected the willingness of bystanders to perform CPR and/or use an AED Comparator: No such factor or any other factor that affected the willingness of bystanders to perform CPR and/or use an AED
17 18 19 20	 Intervention (Exposure): Factors (barriers or facilitators) that affected the willingness of bystanders to perform CPR and/or use an AED Comparator: No such factor or any other factor that affected the willingness of bystanders to perform CPR and/or use an AED Outcomes: Bystander CPR rate, rate of bystander defibrillation with an AED, willingness

• Time frame: August 1, 2022, to June 28, 2024

1 Summary of Evidence

2 A ScopRev was conducted for 2020,²⁴² and details of that review can be found in the 2020 CoSTR. An EvUp was done in 2022.^{9,10,12,13} The complete 2025 EvUp is provided in 3 4 Appendix B. Three new observational studies, like several others included in earlier searches, focused on disparities in receiving CPR rather than factors affecting willingness to perform it. A 5 6 revised PICOST should distinguish between factors related to OHCA patients receiving CPR 7 (such as community-level disparities) and factors associated with bystanders performing CPR 8 and using AEDs (such as personal-level willingness). Because the recommendation from 2020 9 was not based on a GRADE SysRev, the EIT Task Force added a new good practice statement to 10 the existing treatment recommendations.

11 Treatment Recommendations (2020, Unchanged From 2010)

To increase willingness to perform CPR, laypeople should receive training in CPR. This
training should include recognizing gasping or abnormal breathing as a sign of cardiac arrest
when other signs of life are absent.

Laypeople should be trained to start resuscitation with chest compressions in adult and pediatric victims. If unwilling or unable to perform ventilation, rescuers should be instructed to continue compression-only CPR.

18 EMS dispatchers should provide CPR instructions to callers who report cardiac arrest.
19 When providing CPR instructions, EMS dispatchers should include recognition of gasping and
20 abnormal breathing.

21 Treatment Recommendations (2025)

The task force encourages resuscitation councils, communities, and emergency medical
 services to provide easy access to BLS courses, raise awareness about cardiac arrest and its

1 treatment, and utilize training, public outreach, and social media to increase laypersons'

2 willingness to perform CPR (good practice statement).

3 Clinical Decision Rules to Facilitate In-hospital Do-Not-Attempt CPR (EIT 6305, SysRev

- 4 2022, EvUp 2025)
- 5 A SysRev was conducted in 2022,²⁴³ and details of that review can be found in the 2022
- 6 CoSTR summary.^{9,10,236,237} The complete EvUp is provided in Appendix B.

7 Population, Intervention, Comparator, Outcome, and Time Frame

- 8 Population: Hospitalized adults and children experiencing an in-hospital cardiac arrest
- 9 Intervention: Any pre-arrest clinical prediction rule
- 10 Comparator: No clinical prediction rule
- Outcomes: Return of spontaneous circulation, survival to hospital discharge/30-days or
 survival with favorable neurological outcome
- 13 Time frame: January 1, 2021, to November 27, 2024
- 14 Summary of Evidence
- 15 Four new studies were found.²⁴⁴⁻²⁴⁷ Overall, there are still no studies investigating the
- 16 prospective implementation of prediction models for do-not-attempt cardiopulmonary
- 17 resuscitation orders. Therefore, a SysRev is not warranted.
- 18 Treatment Recommendations (2022)
- 19 We recommend against using any currently available pre-arrest prediction rule as a sole
- 20 reason to not resuscitate an adult with in-hospital cardiac arrest (strong recommendation, very
- 21 low–certainty evidence).
- 22 We are unable to recommend for or against any available pre-arrest prediction rule to
- 23 facilitate do-not-attempt cardiopulmonary resuscitation discussions with adult patients or their

1 next of kin as there are no studies investigating the effect of clinical implementation of such

2 score.

We are unable to provide any recommendation for pediatric patients as no studies onchildren were identified.

5 Termination of Resuscitation for In-Hospital Cardiac Arrest (EIT 6308, EvUp 2025)

6 Population, Intervention, Comparator, Outcome, and Time Frame

- 7 Population: Adults and children with IHCA
- 8 Intervention: Use of any clinical decision rule
- 9 Comparator: No clinical decision rule
- Outcomes: No return of spontaneous circulation, death before hospital discharge, survival
 with unfavorable neurological outcome, death within 30 days
- 12 Time frame: January 1, 2020, to May 20, 2024
- 13 Summary of Evidence
- 14 A SysRev was previously conducted in 2020.²⁴⁸ An EvUp was done in 2025.^{9,10,236,237}

15 The complete EvUp is provided in Appendix B. This Evidence Update did not identify any new

16 studies. Accordingly, a new SysRev is not warranted.

17 Treatment Recommendations (2020)

18 We did not identify any clinical decision rule that was able to reliably predict death

- 19 following in-hospital cardiac arrest. We recommend against use of the UN10 rule (U-
- 20 unwitnessed arrest; N-nonshockable rhythm; 10-ROSC not obtained within 10 minutes) as a
- 21 sole strategy to terminate in-hospital resuscitation (strong recommendation, very low-certainty
- 22 evidence).

1	Chain of Survival (EIT 6311, SysRev 2024, EvUp 2025)
2	A SysRev was conducted in 2024, ²⁴⁹ and details of that review can be found in the 2024
3	CoSTR summary. ^{231,232} The complete EvUp is provided in Appendix B.
4	Population, Intervention, Comparator, Outcome, Study Designs, and Time Frame
5	• Population: Literature using the term <i>chain of survival</i> or similar terms (eg, <i>survival</i>
6	chain, chain of [other pathology])
7	• Intervention (Exposure): Adaptations of the original chain of survival ²⁵⁰
8	• Comparator: The original chain of survival ²⁵⁰
9	• Outcomes: Composition of the specific variations in adapted versions, attitudes, rationale,
10	and views concerning the adaptation; incentives to develop novel versions; way of
11	implementation of adapted versions; way of using adapted versions in education;
12	variations in visualization; effect of the use of the chain of survival or variants on
13	teaching, implementation, and patient outcomes
14	• Study designs: In addition to standard criteria, designs such as narrative literature, letters,
15	commentaries, and editorials were included.
16	• Time frame: January 1, 2023, to October 21, 2024
17	Summary of Evidence
18	The 7 newly found studies do not add any new information to the CoSTR from 2024. ²⁵¹⁻
19	²⁵⁷ No new SysRev is indicated. Task force insights were discussed in detail in the 2024 CoSTR

20 summary.^{231,232,258}

1	Impact of Support on Menta	l Health in Cosurvivors o	of Cardiac Arrest Patients	(EIT 6315.
-	impact of Support on Menta			(,

2 EvUp 2025)

3 Population, Intervention, Comparator, Outcome, and Time Frame

- Population: Co-survivors (any age) who witnessed resuscitation of cardiac arrest (any age)
 Intervention: Co-survivors who received support for their mental health, after the event
- Comparator: No support or any other type of support
- 8 Outcomes: Mental health (eg, anxiety, depression, post-traumatic stress disorder), quality
- 9 of life, socio-economic measures
- 10 Time frame: From inception to October 24, 2024

11 Summary of Evidence

12 The complete EvUp is provided in Appendix B. Co-survivor is a general term for family 13 members, friends, neighbors, or anyone in a close relationship with the cardiac arrest patient. Out 14 of 652 articles identified, none were relevant to the PICOST. We encourage further research to 15 explore the effect of support for co-survivors who witnessed a cardiac arrest and the effect on

their mental health. As this was a new PICOST, no treatment recommendations were generated.

17 **INSTRUCTIONAL DESIGN**

16

18 CPR Feedback Device Use in Resuscitation Training (EIT 6404, SysRev 2025)

19 Rationale for Review

20 Chest compression skills are an important component of effective resuscitation during

- 21 cardiac arrest. CPR feedback devices provide immediate, real-time feedback on quality of chest
- 22 compressions. Use of CPR feedback devices during resuscitation skills training has the potential
- 23 to enhance CPR skill acquisition and retention.

1 Recent scientific statements highlight a growing trend in the use of CPR feedback 2 devices during resuscitation courses. While earlier reviews showed that these devices can 3 improve short-term educational outcomes, the results have been inconsistent. This topic was last reviewed in the 2020 CoSTR^{9,10} and an updated review was undertaken. The review was 4 5 registered in PROSPERO (CRD42023376751) and the full CoSTR is available on the ILCOR 6 website.259 7 Population, Intervention, Comparator, Outcome, and Time Frame 8 • Population: All laypersons and healthcare providers in any educational setting

- 9 • Intervention: Use of CPR feedback/guidance device during resuscitation training
- 10 • Comparator: No use of CPR feedback/guidance device during resuscitation training
- 11 • Outcomes: Patient survival, quality of performance in actual resuscitations, skill retention 12 (performance after course conclusion), skill acquisition (performance at course 13 conclusion).
- Time frame: January 1, 2005, to June 13, 2024 14
- 15 **Consensus on Science**

Three studies were conducted in lay providers ²⁶⁰⁻²⁶² and 17 in healthcare providers.²⁶³⁻²⁷⁹ 16 17 No studies were identified that examined the impact of using CPR feedback devices during 18 resuscitation training on the outcomes of patient survival or quality of performance in actual 19 resuscitation.

20 Compression Depth

21 Fifteen randomized controlled trials (RCTs) with a total of 4185 participants evaluated 22 the effect of CPR feedback devices on objectively measured mean compression depth, favoring 23 feedback devices (standardized mean difference [SMD] 0.76; 95% CI, 0.02-1.50;

1 $I^2=94\%$).^{260,261,263,265-269,274,276-279} No difference was found between health care professionals and 2 lay persons *P*=0.10).

3	Sixteen RCTs involving 4,304 participants examined the effect of CPR feedback devices
4	during resuscitation training on compression depth compliance, quantitatively measured as the
5	percentage of compressions meeting the resuscitation guidelines during assessment, favoring
6	feedback devices (SMD 0.98; 95%CI, 0.10-1.87; I ² =94%). ^{260-262,264-268,270-274,278-280} No difference
7	was found between health care professionals and lay persons ($P=0.09$).
8	Compression Rate
9	Seventeen RCTs involving a total of 4,327 participants evaluated the effect of CPR
10	feedback devices on objectively measured mean compression rate. ^{260-263,265-270,273-279} Participants
11	trained with CPR feedback devices had a significantly lower mean compression rate compared
12	with those trained without them, as participants in the nonfeedback group tended to compress too
13	quickly (>120 bpm) (SMD -0.29 ; 95% CI, 0.48-0.10, I ² =3%). No difference was found between
14	health care professionals and laypersons ($P=0.67$).
15	Nine RCTs involving 905 participants examined the effect of CPR feedback devices
16	during resuscitation training on compression rate compliance measured as the percentage of
17	compressions within the guideline-recommended rate of 100-120 bpm, and results favored use
18	of feedback devices (SMD 0.44, 95%CI, 0.23-0.66; I ² =61%). ^{260,264,267,269-272,278,279} No difference
19	was found between health care professionals and lay persons ($P=0.80$).
20	Chest Recoil
21	Ten RCTs involving a total of 3,496 participants evaluated the effect of CPR feedback
22	devices during training on chest recoil quantitatively measured as the percentage of
23	compressions with full chest recoil, overall favoring feedback devices (SMD 0.53; 95% CI, 0.31-
24	0.75, I ² =87%). ^{260,261,264,265,269,271,272,276,278,279} Subgroup analysis showed that the effect of the

1	feedback device on recoil compliance was significantly improved in the healthcare providers
2	(SMD 0.67; 95% CI, 0.52-0.82; I ² =0%), but not in the laypersons (SMD 0.20; 95% CI, 0.24-
3	0.64; I ² =83%).

4 Overall Quality of CPR

Eight RCTs involving a total of 3261 participants evaluated the effect of CPR feedback
devices on overall CPR quality during resuscitation training assessed by computer software
integrating all 3 metrics of chest compression (depth, rate and recoil), with limited validity
evidence favoring feedback devices (SMD 0.7; 95% CI, 0.40-1.03, I²=86%).^{260,261,265,269-271,276,278}
Subgroup analysis showed that the effect of the feedback device use on the overall CPR score
was statistically significantly higher in the healthcare professionals than in the lay persons
(*P*=0.02).

Three RCTs involving a total of 349 participants evaluated the effect of CPR feedback devices on overall CPR quality during resuscitation training assessed dichotomously, based on whether compression depth, rate, and recoil all concurrently met guideline standards, favoring feedback devices (SMD 0.19; 95% CI, 0.01-0.38, I²=76%).^{272,274,277}

16 Prior Treatment Recommendations (2020)

We suggest the use of feedback devices that provide directive feedback on compression
rate, depth, release, and hand position during CPR training (weak recommendation, low-certainty
evidence).

- 20 If feedback devices are not available, we suggest the use of tonal guidance (examples
- 21 include music or metronome) during training to improve compression rate only (weak
- 22 recommendation, low-certainty evidence).

1	Treatment	Recommendations	(2025)
---	-----------	------------------------	--------

2	We recommend the use of CPR feedback devices during resuscitation training for		
3	healthcare providers and lay providers (strong recommendation, moderate-certainty evidence).		
4	Justification and Evidence-to-Decision Framework Highlights		
5	The complete evidence-to-decision table is provided in Appendix A.		
6	The results of the meta-analyses of RCTs found evidence favoring the use of feedback		
7	devices during training across all CPR quality outcomes with moderate to strong association.		
8	Subgroup analyses showed the effect of feedback devices on resuscitation training was		
9	greater in healthcare providers than in the lay providers, but there was still a significant effect for		
10	most CPR metrics in lay providers. No undesirable effects were detected in the review, feedback		
11	devices are well accepted, and their use is feasible with relatively low or negligible costs.		
12	Knowledge Gaps		
13	• Relative and synergistic effect of feedback device use when combined with other		
14	educational strategies and instructional design features		
15	• Impact of feedback devices on skill retention beyond the end of a course		
16	• Impact of improved CPR skills from training with feedback devices on patient outcome		
17	• Costs associated with implementing feedback devices during resuscitation training, as		
18	well as its cost-effectiveness		
19	Self-Directed, Digital-Based Versus Instructor-Led Cardiopulmonary Resuscitation		
20	Education and Training in Adults and Children (EIT 6406, SysRev 2025)		
21	Rationale for Review		
22	CPR and AED training is known to improve the willingness and confidence in someone		
23	performing bystander CPR. ²⁸¹ Little is known about whether self-directed digital CPR training is		
24	superior to instructor-led training in developing sufficient skills to provide adequate CPR. This		
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.		

1	topic was reviewed in 2021 and included RCTs and non-RCTs. Since then, several RCTs on this		
2	topic were published and the EIT Task Force initiated a new systematic review that included		
3	only RCTs, which was registered in PROSPERO (CRD42020199176). The full CoSTR is		
4	available on the ILCOR website. ²⁸²		
5	We defined self-directed digital-based CPR training as any form of digital education or		
6	training for CPR that can be completed without an instructor. Instructor-led training was defined		
7	as education or training that occurred in the presence of a BLS instructor.		
8	Population, Intervention, Comparator, Outcome, and Time Frame		
9	• Population: Adults and children undertaking CPR training		
10	• Intervention: Self-directed digitally based CPR training		
11	Comparator: Instructor-led CPR training		
12	• Outcomes:		
13	- Patient outcomes: good neurological outcome at hospital discharge or 30 days,		
14	survival at hospital discharge or 30 days, ROSC, rates of bystander CPR, bystander		
15	CPR quality during an OHCA (any available CPR metrics), rates of automated		
16	external defibrillator (AED) use		
17	- Educational outcomes at end of training and within 12 months: CPR quality (chest		
18	compression depth and rate, chest compression fraction, full chest recoil, hand		
19	position, ventilation rate) and AED competency; CPR and AED knowledge;		
20	confidence and willingness to perform CPR		
21	• Time frame: October 11, 2022, to March 28, 2024		
22	Consensus on Science		

23 No studies were identified for any patient outcome.

- For the educational outcomes, we identified 29 RCTs.²⁸³⁻³¹¹ Because of the high degree
 of heterogeneity in the interventions, comparators, and measurements of outcomes, no meta analysis was performed.
- Sample sizes ranged from 52 participants³¹¹ to 826 participants,²⁹⁸ and 14 of the 29
 studies had sample sizes less than 140 participants.^{283-285,294-297,299-301,305,307-309,311} Populations
 included children; high-school students;^{285,288,306,310,311} university students,^{283,299-301} including
 specific cohorts such as medical^{284,304,307,308} and nursing students;^{291,296}
 adults,^{286,287,290,292,293,297,298,303,305,309} including specific cohorts such as those over 60 years,³⁰²
 parents/caregivers of children,²⁹⁵ parents of children at high risk for sudden cardiopulmonary
- 10 arrest;²⁸⁹ university staff and their spouses,³⁰⁰ and caregivers of family members with cardiac
- 11 histories.²⁹⁴ Details of study designs are displayed in Table 11.

Educational Outcome Study n	CPR quality 27 283-286,288- 301,303-311	AED use 10 284,287,288,291,300,302- 304,306,307	Knowledge 7 289,294,299,305,306,308, 309	Confidence to perform CPR 10 283,292,294- 296,298,300,302,304,311	Willingness to perform CPR 6 ^{286,296,298,300-302}	Test scores immediately to <1 month 25 ^{283-286,288-} 301,303-312	Test scores between 1- 12 months of training 15 284,285,287,290,293,294,296,302,304 -306,308-311
No. of studies per intervention	8 video- only ²⁸³⁻ 285,287,291,293,294, 305	16 video + manikin practice approach 286,287,289,290,293,295- 299,301,302,304,308-310	1 app-based self- training intervention ²⁸⁸	1 virtual reality 303	1 video + manikin + scenario self- training ²⁸⁷	3 computer program/online tutorial + video + manikin ^{292,300,307}	1 interactive computer session ³⁰⁶ 1 game-in-film ³¹¹
Details of interventions	Video-only interventions ranged from 1-minute ²⁹³ to 20-minutes ²⁸⁴ in length (length often not stated)	Videos used with manikin practice ranged from 4– 35 ³⁰¹ mins ^{293, 300} to minutes (length often not stated)	Not well described	Not well described	Not well described	Not well described	Not well described
Comparators	7 formal certified courses 297,298,300,302,307- 309	Course length: 9 min(1) up to 5 hours ³⁰⁷	Not well described	Not well described	Not well described	Not well described	Not well described

 Table 11. Self-Directed Digital-Based CPR Training Versus Instructor-led CPR Training Studies

1	Only some studies with self-directed training interventions had sufficient numbers for
2	comparison at immediate testing (with video + manikin and video-only self-directed training). A
3	video + manikin self-directed intervention was used in 15 studies. ^{286,289,290,293,295-299,301,302,304,308-}
4	³¹⁰ Most of these studies demonstrated no difference between self-directed training using a video
5	+ manikin versus an instructor-led training. Only 1 study favored video + manikin self-directed
6	training for compression rate, ³⁰⁹ proportion of compressions at the correct rate ²⁹³ and hand
7	position. ^{293,297} Instructor-led training was favored over video + manikin self-directed training for
8	chest compression depth, ²⁹³ proportion of chest compressions at the correct depth, ²⁸⁶ hand
9	position, ^{286,290,301} knowledge, ²⁸⁹ and confidence. ³⁰⁴
10	Video-only self-directed training was used in 7 studies ^{283-285,291,293,294,305} and was the
11	favored arm in 3 instances for proportion of compressions at the correct depth, ²⁹¹ chest recoil,
12	²⁹¹ and confidence. ²⁸³ Instructor-led training was favored over video-only self-directed training in
13	other studies for proportion of compressions done at the correct rate, ²⁹³ compression depth, ²⁹³
14	knowledge, ²⁹⁴ and confidence. ²⁹⁴ Across the studies compression rate, depth, fraction, chest
15	recoil, hand position, ventilation rate, AED use, and knowledge and confidence were measured a
16	further 19 times, and no difference was identified between the video-only self-directed training
17	and instructor-led groups.
18	Educational outcomes measured up to 12 months were reported in 14 studies (at 4
19	months, ²⁹⁶ 6 months, ²⁸⁴ between 2-6 months, ³⁰⁸ and between 1-6 months after the
20	training ^{285,287,290,293,294,302,304-306,310,311}). Many of these studies reported a reduction in the quality
21	of the skills being performed (compression rate: 2 studies, ^{293,310} compression depth: 4
22	studies, ^{293,304,306,310} chest compression fraction: 1 study, ³¹¹ chest recoil: 1 study, ³⁰⁴ hand position:
23	4 studies, ^{293,304,306,310} ventilation rate: 1 study, ²⁹⁰ AED: 1 study, ³⁰² knowledge: 1 study, ²⁹⁴
24	confidence: 1 study ³⁰⁴). The opposite of this was seen in 1 study where both the groups were
25	more likely to pass the AED testing at 2 months than immediately after the training. ²⁸⁷
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1 Prior Treatment Recommendations (2020)

2	We recommend instructor-led training (with manikin practice with feedback device) or
3	the use of self-directed training with video kits (instructional video and manikin practice with
4	feedback device) for the acquisition of CPR theory and skills in layperson adults and high
5	school-aged (more than 10 years old) children (strong recommendation, moderate-certainty
6	evidence).
7	We recommend instructor-led training (with AED scenario and practice) or the use of
8	self-directed video kits (instructional video with AED scenario) for the acquisition of AED
9	theory and skills in layperson adults and high school-aged (more than 10 years old) children
10	(strong recommendation, low-certainty evidence).
11	We suggest that BLS video education (without manikin practice) be used when
12	instructor-led training or self-directed training with video kits (instructional video plus manikin
13	with feedback device) are not accessible, or when quantity over quality of BLS training is needed
14	in adults and in children (weak recommendation, low-certainty evidence).
15	There was insufficient evidence to make a recommendation on gaming as a CPR or AED
16	training method.
17	There was insufficient evidence to suggest a treatment effect on bystander CPR rates or
18	patient outcomes.
19	Treatment Recommendations (2025)
20	We suggest the use of either instructor-led training or self-directed digital training for the
21	acquisition of CPR or AED skills in lay adults and high-school-aged (>10 years) children (weak
22	recommendation, very low-certainty evidence).

We suggest self-directed digital training be used when instructor-led training is not
 accessible, or when quantity over quality of CPR training is needed in adults and children (weak
 recommendation, very low-certainty evidence).

There was insufficient evidence to make a recommendation on game-in-film, virtual
reality, computer programs, online tutorials or app-based training as a CPR or AED training
method.

7 Justification and Evidence-to-Decision Framework Highlights

8 The complete evidence-to-decision table is provided in Appendix A.

9 The acquisition of CPR skills may vary across different mediums and age groups.

10 However, any form of CPR/AED training is likely to improve knowledge, confidence and

11 willingness in simulated settings, but this may not translate to real-life situations. Digital and

12 instructor-led materials need updating to ensure training complies with CPR recommendations.

13 Digital training enables skills to be refreshed at any time, and at no additional cost, and provides

14 the opportunity to teach others. It also enables more people to be educated in periods of need (eg,

15 pandemics).

Cost-effectiveness analysis favored digital self-directed training.^{292,310} This reflects the
 known barriers that exist to attending instructor-led CPR classes (eg, time, costs, and

18 accessibility) and the need to make CPR training available to everyone.

19 Knowledge Gaps

Standardized outcome measures (educational and CPR performance outcomes) are
 needed to enable pooling of data. Comparator groups should be aligned using
 standardized, accepted instructor-led training programmes to reduce inconsistency and
 uncertainty.

1	• The ability of these interventions and comparators to produce findings that meet accepted
2	standards for adequate CPR that are maintained at defined time intervals
3	• Effectiveness of specific self-directed digital interventions, such as game-in-film, virtual
4	reality, computer programmes, online tutorials or app-based training
5	• The treatment effect on bystander CPR rates and patient outcomes
6	In Situ (Workplace-Based) Simulation-Based Cardiopulmonary Resuscitation Training
7	(EIT 6407, SysRev 2025)
8	Rationale for Review
9	Simulation-based training is traditionally performed in classrooms or laboratories
10	specifically equipped with manikins, monitors, and equipment needed for running cardiac arrest
11	scenarios. Providing such training within patient care areas has theoretical advantages, with
12	learning occurring in the context of the real clinical environment and organizational structures.
13	The EIT Task Force performed a SysRev, which was registered in PROSPERO
14	(CRD42024521780). The full CoSTR can be found on the ILCOR website. ³¹³
15	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
16	• Population: Healthcare providers
17	• Intervention: In situ (workplace-based) simulation-based CPR training
18	Comparator: Traditional training
19	• Outcomes: Patient survival and outcome, CPR skill performance at course completion
20	and in actual resuscitation, CPR skill performance $<1yr$ and $\ge1yr$ after course
21	completion; CPR quality (at course completion, <1 yr and ≥1 yr after course completion).
22	Teamwork competencies (at course completion, <1 yr and ≥1 yr after course completion);
23	resources (time, equipment, cost), clinical performance (adherence to guidelines, time to
24	critical interventions, medication errors, etc.)

1	٠	Study Designs: In addition to standard criteria, reviews and studies with self-assessment
2		as the only outcome were excluded.

3 • Time frame: From inception to March 25, 2024

4 Consensus on Science

5 We identified 4 studies in adults,³¹⁴⁻³¹⁷ 3 in children,³¹⁸⁻³²⁰ and 2 in neonates.^{321,322} Results 6 globally favored in situ simulation across all studies. Because of heterogeneity in the 7 interventions and outcome definitions, no meta-analysis or formal subgroup analysis according 8 to the type of training (ie, BLS, advanced cardiovascular life support, pediatric advanced life 9 support, neonatal life support) was performed.

10 Patient Survival

One nonrandomized prospective observational study with historical controls³¹⁹ reported an association between the in situ simulation period and higher odds of survival at hospital discharge in children who experienced cardiac arrest [50/124 (40.3%) survival in the preintervention period versus 28/46 (60.9%) in the post-intervention period; (OR, 2.06; 95% CI, 1.02-4.25)].

16 Other Patient Outcomes

One nonrandomized study³²² reported a lower incidence of neonatal asphyxia [88 (0.64%) versus 133 (0.84%); P=0.045], severe asphyxia [8 (0.058%) versus 22 (0.138%); P=0.029], hypoxic-ischemic encephalopathy [2 (0.01%) versus 16 (0.1%); P=0.003], and meconium aspiration syndrome [12 (0.09%) versus 31 (0.19%); P=0.014] in the post intervention (in situ simulation) versus pre-intervention period, but no difference in the composite outcome of neonatal asphyxia or low Apgar score [111 (0.8%) versus 154 (0.97%); P=0.128], or low Apgar score [23 (0.17%) versus 21 (0.13%); P=0.445].

1 Clinical Performance in Actual Resuscitation

2	Three nonrandomized studies were identified. ^{315,318,319} One before-and-after study ³¹⁹
3	reported no difference in neurologic outcome at hospital discharge, the performance of chest
4	compressions for heart rate <60/sec, or the performance of shock <3 min from recognized
5	ventricular fibrillation/pulseless ventricular tachycardia, but found improvement in chest
6	compressions between rhythm checks with in situ simulation.
7	Another before-and-after study ³¹⁵ reported a 12% reduction in time to call for help, a
8	52% reduction in time elapsed to initiation of chest compressions, and a 37% reduction in time to
9	initial defibrillation, all favoring in situ simulation. A third before-and-after study ³¹⁸ reported a
10	39% decrease in nonadherence to pediatric advanced life support guidelines for subsequent
11	epinephrine timing, favoring in situ simulation, but no significant difference in the administration
12	of epinephrine every 3-5 min.
13	Teamwork Competencies in Actual Resuscitation at Course Completion and Less Than 1 Year
14	After the Course
15	One nonrandomized study ³¹⁹ reported higher adherence to resuscitation standard
16	operating performance variables amongst pediatric code teams during the period of in situ
17	simulation [38/183 (20.8%) versus 23/64 (35.9); OR, 2.14; 95% CI; 1.15-3.99].
18	Clinical Performance in Simulation
19	We found 4 RCTs ^{320,316,321,317} and 1 nonrandomized study. ³¹⁴ One RCT ³²⁰ reported
20	improved skill performance measured by the Clinical Performance Tool [6.2 (\pm 4.3) versus 1.2
21	(\pm 2.9); <i>P</i> =0.004]. One RCT ³¹⁷ reported shorter time to call for help and initiation of chest
22	compression with in situ simulation (P <0.001). The same study found shorter time to successful
23	defibrillation (P <0.001), and improvement in the composite outcome of initiation of

	compressions what 20 see of calculat arrest, denomination what in 100 see of detection of a
2	shockable rhythm and use of a backboard ($P < 0.001$).
3	One RCT ³²¹ reported improvement in technical skills and adherence to guidelines with in
4	situ simulation and a higher percentage of scenarios with efficient resuscitation at 3 minutes [14
5	(24%) versus 2 (4%); <i>P</i> =0.003] and 5 minutes [40 (68%) versus 25 (47%); <i>P</i> =0.06].
6	One RCT ³¹⁶ reported better medical management test scores with in situ simulation
7	(P <0.001), while another ³¹⁴ reported no difference between the 2 groups during mock code.
8	Teamwork Competencies in Simulation at Course Completion and Less Than 1 Year After the
9	Course
10	One RCT ³²⁰ reported no difference in teamwork assessed by the Behavioral Assessment
11	Score [2.8 (\pm 3.6) versus 3.0 (\pm 4.0); <i>P</i> =0.69]. Other RCTs reported better team performance
12	score ³²¹ during in situ simulation [31.1 (20.8–36.8) versus 19.9 (13.3–25.0); <i>P</i> =<0.001], while
13	better teamwork with in situ simulation was reported in another RCT^{316} [10.84 (±3.26) versus
14	7.87 (±4.14), <i>P</i> < 0.001].
15	CPR Skill Performance in Simulation at Course Completion
16	One nonrandomized study ³¹⁴ evaluated CPR fraction as a measure of skill and found
17	improvement favoring in situ simulation (1.8% per time interval of training (P =0.02).
18	No studies were found analyzing resources needed for in situ simulation, or CPR skill
19	performance in actual resuscitation.
20	Treatment Recommendations (2025)
21	We recommend that in situ simulation may be considered as an option for CPR training
22	where resources are readily available (weak recommendation, very low-certainty evidence).
23	Justification and Evidence-to-Decision Framework Highlights
24	The complete evidence-to-decision table is provided in Appendix A.
	© 2025 American Heart Association Inc. European Desuscitation Council and International Ligison Committee on

compressions within 20 sec of cardiac arrest, defibrillation within 180 sec of detection of a

1

1	Evidence from RCTs and nonrandomized studies supports the effectiveness of in situ
2	simulation to teach CPR. Critical outcomes, including patient survival and clinical performance
3	and teamwork competencies in actual resuscitation, improved with in situ simulation. The
4	balance between the benefit and the resources needed may be favorable, especially when critical
5	outcomes are considered. Studies addressing patient survival and other clinical outcomes were
6	found only in the pediatric setting, which provides indirect evidence for adults.
7	Knowledge Gaps
8	• The resources required for implementation of in situ training, including direct and
9	indirect costs, workload, and equipment needed
10	• The feasibility of in situ training in low and middle-income countries.
11	Manikin Fidelity in Resuscitation Education (EIT 6410, SysRev 2025)
12	Rationale for Review
13	Higher-fidelity manikins have physical features that make them more realistic, including
14	changes in simulated physical states. Greater realism during life support training may enhance
15	learner engagement and make it easier to suspend disbelief. However, using higher-fidelity
16	manikins depends on the availability of resources to purchase, properly implement, and maintain
17	them; additionally, centers require trained personnel who can operate such manikins. The EIT
18	Task Force initiated this SysRev that was registered in PROSPERO (CRD4202453504), and the
19	full online CoSTR is available on the ILCOR website. ³²³
20	Population, Intervention, Comparator, Outcome, and Time Frame
21	• Population: Participants undertaking basic and advanced life support training in an
22	education setting
23	• Intervention: Use of high-fidelity manikins
24	• Comparator: Use of low-fidelity manikins

1	• Outcomes: Patient outcomes, skill performance in actual resuscitations, skill/knowledge
2	at 1 year, skill/knowledge at time between course conclusion and 1 year, skill/knowledge
3	at course conclusion, learner confidence, learner preference, cost/resource utilization
4	• Time frame: January 1, 2005, to April 30, 2024
5	Consensus on Science
6	Twenty-one studies were included. ³²⁴⁻³⁴⁴ All involved healthcare professionals or trainees
7	and were performed in North America, ³²⁵⁻³³³ Asia, ^{324,336,338,340} Europe, ³³⁴ and Australia. ³³⁷
8	Skill at Course Conclusion
9	Data were reported in 8 RCTs with a total of 550 participants. ^{326,327,329-331,333,336,341} RCTs
10	assessed performance in scenarios with manikins: 4 of adults, ^{327,331,333,341} 2 of children, ^{326,329} and
11	2 of neonates. ^{327,333} Meta-analysis results of these studies favored high-fidelity manikins (Figure
12	5).

13 Figure 5. Skill at completion of courses using high-fidelity manikins.

	Hig	her fideli	ty					Std. mean difference	Std. mean difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Cheng 2013	7.9	7	23	6.3	7.1	22	12.5%	0.22 [-0.36 , 0.81]	-
Conlon 2014	66.3	9	18	60.1	8.9	18	12.0%	0.68 [0.00 , 1.35]	
Donoghue 2009	11.1	1.8	25	4.8	1.7	26	10.6%	3.55 [2.64 , 4.45]	
Finan 2012	72.2	9	16	78.2	11.7	16	11.8%	-0.56 [-1.27 , 0.15]	
Hoadley 2009	26.1	2.5	29	24.7	3.7	24	12.7%	0.45 [-0.10 , 0.99]	L
Lo 2011	41.5	5.6	45	35	6	41	13.2%	1.11 [0.66 , 1.57]	-
Nimbalkar 2015	31.5	6.1	50	29.7	5.6	51	13.4%	0.31 [-0.09 , 0.70]	-
Settles 2011	17.2	1.4	73	17.2	1.6	73	13.7%	0.00 [-0.32 , 0.32]	+
Total (95% Cl)			279			271	100.0%	0.66 [0.08 , 1.25]	•
Heterogeneity: Tau ² =	0.61; Chi2	= 70.00, 0	df=7(P <	< 0.00001);	I² = 90%				•
Test for overall effect:	Z = 2.24 (P	9 = 0.02)							-4 -2 0 2 4
Test for subgroup diffe	erences: No	ot applicat	ble					Fa	vors lower fidelity Favors higher fidel

- 14
- 15 Two additional RCTs with 107 participants did not report sufficient measures of variance
- 16 for inclusion in the meta-analysis. Both found no difference in skill performance at course
- 17 completion.^{328,337}

1 Knowledge at Course Completion

- 2 Data were reported in 7 RCTs with 1016 participants.^{324,326,327,331,334,336,341} Five scenarios
- 3 were in adults, ^{324,327,331,334,341} 1 in children, ³²⁶ and 1 in neonates. ³³⁶ The meta-analysis revealed no
- 4 significant effect of high-fidelity manikins (Figure 6).

5 Figure 6. Knowledge at completion of courses using high-fidelity manikins.

	Higl	her fideli	ty	Lov	ver fideli	ty		Std. mean difference	Std. mean difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Aqel 2014	12.7	1.1	45	11.2	0.9	45	14.0%	1.48 [1.01 , 1.95]	
Cheng 2013	4	1.8	228	4.9	1.8	224	15.8%	-0.50 [-0.69 , -0.31]	-
Conlon 2014	40.8	14	18	41.3	14.1	18	12.4%	-0.03 [-0.69 , 0.62]	
Hoadley 2009	90.3	7.8	29	87.7	9.3	24	13.3%	0.30 [-0.24 , 0.85]	_
Massoth 2019	16.5	2	67	16.3	2.6	68	14.9%	0.09 [-0.25 , 0.42]	_ _ _
Nimbalkar 2015	35.2	2.7	51	33.9	3.3	53	14.6%	0.43 [0.04 , 0.82]	
Settles 2011	23.6	1.4	73	23.6	1.4	73	15.0%	0.00 [-0.32 , 0.32]	-
Total (95% CI)			511			505	100.0%	0.24 [-0.23 , 0.71]	•
Heterogeneity: Tau ² =	0.36; Chi ² :	= 71.13, c	if = 6 (P <	0.00001)	I² = 92%				•
Test for overall effect:	Z = 0.99 (P	= 0.32)							-2 -1 0 1 2
Test for subgroup diffe	erences: No	t applicat	ole					Fav	ors lower fidelity Favors higher fide

6

Three additional RCTs with 184 participants and 1 observational study of 34 subjects did
not report sufficient measures of variance for inclusion in meta-analysis.^{332,337,339,342} One of these
found improved knowledge at course completion;³³⁷ the others found no difference.^{332,339,342}

10 Skill: Time-to-Task Performance at Course Conclusion

11 Three RCTs with 179 participants^{325,342,344} were reviewed. One found faster time-to-task

12 completion (EMS activation),³³⁵ another found shorter time to intervention and assessment,³⁴²

13 and 1 other study found no difference in time to tracheal intubation during neonatal resuscitation

14 program training.³²⁵

15 Skill: Teamwork at Course Conclusion

- 16 Teamwork performance was reported in 3 RCTs with 193 participants.^{326,337,343} Two
- 17 found improved teamwork behaviors with higher-fidelity manikins,^{337,343} and 1 found no
- 18 difference.³²⁶

1 Skill: CPR Parameters at Course Conclusion

2	Two RCTs with 80 intervention subjects and 80 controls were reviewed. One study found
3	greater improvement as measured at course completion by the American Heart Association CPR
4	skills checklist among subjects trained on higher-fidelity manikins. ³²⁴ The second RCT found
5	better compression depth and compression fraction immediately post-training among subjects
6	trained on higher-fidelity manikins. ³³⁵

7 Skill: Clinical Performance at 3 Months or Greater

8 Clinical performance was reported in 3 RCTs with 312 participants.^{324,333,341} One RCT in 9 nursing students found better clinical performance in a CPR scenario 3 months after training with 10 higher-fidelity manikins;³²⁴ 2 studies of advanced cardiovascular life support skills found no 11 difference at 3 months or at 1 year posttraining.^{333,341}

12 Knowledge at 3 Months or Longer

13 Knowledge retained months after training was reported in 3 RCTs with 330

14 participants.^{324,341,342} Two RCTs found improved knowledge following higher-fidelity manikin

15 training (3 months after BLS training,³²⁴ 6 months after pediatric advanced life support

16 training,³⁴²) and 1 RCT found no difference in advanced cardiovascular life support knowledge

17 at 6 to 9 months post-training.³⁴¹

18 Attitudes and Preferences

19 Learner preference and confidence following training were reported in 10 RCTs with 818

20 participants.^{325,327,328,330,331,334,338,340,341,344} Seven RCTs found greater effectiveness of training

21 with higher-fidelity manikins,^{325,327,328,334,338,340,344} and 3 RCTs found no difference.^{330,331,341}

Greif 75

1	Prior Treatment Recommendations (2015)
2	We suggest the use of high-fidelity manikins when training centers/organizations have
3	the infrastructure, trained personnel, and resources to maintain the program (weak
4	recommendations, very low-quality evidence).
5	If high-fidelity manikins are not available, we suggest that the use of low-fidelity
6	manikins is acceptable for standard ALS training in an educational setting (weak
7	recommendation, low-quality evidence).
8	Treatment Recommendations (2025)
9	We suggest the use of high-fidelity manikins when training centers or organizations have
10	the infrastructure, trained personnel, and resources to use them (weak recommendations, very
11	low-certainty evidence).
12	If high-fidelity manikins are not available, we suggest that the use of low-fidelity
13	manikins is acceptable for life-support training in an educational setting (weak recommendation,
14	low-certainty evidence).
15	Justification and Evidence-to-Decision Framework Highlights
16	The complete evidence-to-decision table is provided in Appendix A.
17	Most studies found a positive impact on skill or knowledge at conclusion of courses with
18	high-fidelity manikins, and no study demonstrated a negative effect on educational outcomes.
19	Given that resource use and cost were not directly studied, and higher-fidelity manikins are
20	likely more expensive to obtain and maintain, we limited our recommendation to centers where
21	these resources are available.
22	The recommendation for use of low-fidelity manikins when higher-fidelity manikins are
23	not available is based on studies which found improved performance in post-training versus pre-
24	training assessment in all groups irrespective of level of manikin fidelity.

Greif 76

1	No studies reported on cost or resources needed to implement higher-fidelity manikins.
2	Our recommendation is predicated on the higher-fidelity manikins being used in a setting with
3	appropriate space, infrastructure, personnel, and resources to use them properly. Educational
4	settings where these resources are less available might make implementation difficult.
5	Knowledge Gaps
6	• Cost-effectiveness and implementation needs for high-fidelity manikin use in training
7	• Effect of high-fidelity manikins on longer-term educational outcomes (skill, knowledge
8	retention, decay)
9	• Specific simulation features that are most associated with improved learning
10	• Effect of high-fidelity manikin use in training on actual patient-care processes and patient
11	outcomes
12	• Benefits of high-fidelity manikin use in training in different resource settings
13	Cognitive Aids During Resuscitation (EIT 6400, SysRev 2024, EvUp 2025)
14	A SysRev was conducted for 2024 ³⁴⁵ ; details can be found in the 2024 CoSTR
15	summary. ^{231,232} The complete 2025 EvUp is provided in Appendix B.
16	Population, Intervention, Comparator, Outcome, and Time Frame
17	• Population: Adults, children and neonates in any setting (in-hospital or out-of-hospital)
18	requiring resuscitation provided by lay providers or health care professionals
19	• Intervention: Use of cognitive aids during resuscitation
20	• Comparator: No use of cognitive aids
21	• Outcomes: Survival to hospital discharge with good neurological outcome and survival to
22	hospital discharge were ranked as critical outcomes. Quality of performance in actual
23	resuscitations, skill performance 1 year after course conclusion, skill performance
24	between course conclusion and 1 year, skill performance at course conclusion, and
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on

Resuscitation.

1	knowledge at course conclusion were included as important outcomes. Measures of effect
2	outcomes included adherence to resuscitation guidelines, CPR quality, and test scores.
3	• Time frame: June 1, 2023, to 23 April 2024
4	Summary of Evidence
5	The 3 new studies identified are consistent in supporting previous findings and do not
6	substantially change the weight of evidence. ³⁴⁶⁻³⁴⁸ A further SysRev or ScopRev is not currently
7	warranted.
8	Treatment Recommendations (2024)
9	We suggest the use of cognitive aids by healthcare providers in resuscitation (weak
10	recommendation, very low-certainty evidence).
11	We do not recommend the use of cognitive aids for lay providers initiating CPR (weak
12	recommendation, low-certainty evidence).
13	We did not examine the use of cognitive aids in health professional or lay rescuer training
14	in resuscitation, so no recommendation for or against can be made.
15	Provider Workload and Stress During Resuscitation (EIT 6401, ScopRev 2024, EvUp 2025)
16	A ScopRev was completed for 2024, ³⁴⁹ and details can be found in the 2024 CoSTR
17	summary. ^{231,232} The complete EvUp is provided in Appendix B.
18	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
19	• Population: Health care providers performing resuscitation on patients in cardiac arrest in
20	clinical settings or on manikins in a simulated setting
21	• Exposure: Presence of any factors that would possibly impact the healthcare provider's
22	perceived workload or stress
23	• Comparison: Absence of the specific factor

1	٠	Outcomes: Objective or subjective measures of workload and stress experienced by
2		healthcare providers during resuscitations

- Study design: In addition to standard criteria, unpublished studies (eg, conference
 abstracts, trial protocols), letters, editorials, comments, case reports, grey literature, and
 social media were eligible for inclusion.
- Time frame: February 2, 2024, to October 2, 2024

7 Summary of Evidence

8 This EvUp found 2 new RCTs in a simulation setting (1 in neonatal resuscitation, the 9 other in adult simulation). The evidence in these studies did not add to that already known, and 10 therefore a new SysRev is not warranted.

11 Stepwise Approach to Skills Training in Resuscitation (EIT 6402, SysRev 2023, EvUp 2025)

- 12 A SysRev was conducted for 2023,³⁵⁰ and details of that review can be found in the 2023
- 13 CoSTR summary.^{4,5} The complete EvUp is provided in Appendix B.

14 Population, Intervention, Comparator, Outcome, and Time Frame

- Population: Adults and children undertaking skills training related to resuscitation and
 First Aid in any educational setting
- Intervention: Approaches to skills teaching that are not the Peyton 4-steps approach,
- 18 including approaches without distinct stages, or modified Peyton 4-steps approaches with
- 19 more or less than 4 steps, or with delivering 1 or more steps by alternative methods (eg,
- 20 video)
- Comparator: Peyton's 4-steps approach for skills teaching
- Outcomes:

1	 Improved educational outcomes: skill performance after end of course; skill
2	performance at end of course; participants' confidence to perform the skill on
3	patients; participants' preference of teaching method
4	- Patient outcomes: skills performed appropriately on real patient after the course.
5	- Additional outcomes: teachers' preference of teaching method; side effects of
6	teaching.
7	• Time frame: January 1, 2022, to November 20, 2024
8	Summary of Evidence
9	One new RCT was found ³⁵¹ , which does not add new evidence to that already known. A
10	SysRev is not currently warranted.
11	Treatment Recommendations (2023)
12	We suggest that stepwise training should be the method of choice for skills training in
13	resuscitation (weak recommendation, very low-certainty evidence).
14	Immersive Technologies: Virtual Reality, Augmented Reality (EIT 6405, SysRev 2024,
15	EvUp 2025)
16	A SysRev was conducted for 2024, ³⁵² and details of that review can be found in the 2024
17	CoSTR summary. ^{231,232} The complete EvUp is provided in Appendix B.
18	Population, Intervention, Comparator, Outcome, and Time Frame
19	• Population: All laypersons and health care providers in any educational setting.
20	• Intervention: Immersive technologies (virtual reality, augmented reality, mixed reality,
21	extended reality) as part of instructional design to train neonatal, pediatric, adult basic
22	and advanced life support.
23	• Comparator: Other methods of resuscitation training in basic and advanced life support
24	(eg, traditional manikin-based simulation training, other).

1	• Outcomes: Knowledge acquisition and retention, skills acquisition and retention, skill
2	performance in real CPR, willingness to help, bystander CPR rate, and patients' survival.
3	• Time frame: April 4, 2023, to October 10, 2024.
4	Summary of Evidence
5	No studies on augmented reality were found in this updated search. For virtual reality, 5
6	RCTs ³⁵³⁻³⁵⁷ and 2 observational studies ^{358,359} were found. The evidence identified continues to
7	support the current recommendations, ³⁶⁰ and the certainty of this evidence remains low. The
8	current evidence update does not warrant a new SysRev.
9	Treatment Recommendations (2024)
10	We suggest the use of either augmented reality or traditional methods for basic life
11	support training of lay people and healthcare providers (weak recommendation, very low-
12	certainty evidence).
13	We suggest against the use of virtual reality-only for basic and advanced life support
14	training of lay people and healthcare providers (weak recommendation, very low-certainty
15	evidence).
16	Blended Learning Approach for Life Support Education (EIT 6409, SysRev 2022, EvUp
17	2025)
18	A SysRev was conducted for 2022, ³⁶¹ and details of that review can be found in the 2020
19	CoSTR. ^{6.7} An EvUp was done in 2025. ^{12,13} The complete EvUp is provided in Appendix B.
20	Population, Intervention, Comparator, Outcome, and Time Frame
21	• Population: Participants undertaking an accredited life support course (eg BLS, ALS,
22	pediatric advanced life support)
23	• Intervention: Blended learning approach
24	Comparator: Non blended learning approach

1	• Outcomes:
2	- Clinical outcomes: Survival (Critical) and neurological outcome.
3	- Knowledge acquisition (end of course, 6 months, 1 year).
4	- Skills acquisition (end of course, 6 months, 1 year).
5	 Participant satisfaction (end of course).
6	 Implementation outcomes (cost, time needed).
7	• Time frame: Jan 1, 2021, to Jun 19, 2024
8	Summary of Evidence
9	No relevant studies were identified and no new SysRev is indicated.
10	Treatment Recommendations (2022)
11	We recommend blended-learning as opposed to a nonblended approach for life support
12	training when resources and accessibility permit its implementation (strong recommendation,
13	very low-certainty evidence).
14	Gamified Learning Versus Other Forms of Nongamified Learning (EIT 6412, SysRev 2024,
15	EvUp 2025)
16	A SysRev was done for 2024 ³⁶² and details can be found in the 2024 CoSTR
17	summary. ^{231,232} The complete EvUp is provided in Appendix B.
18	Population, Intervention, Comparator, Outcome, and Time Frame
19	• Population: Learners training in basic or advanced life support
20	• Intervention: Instruction using gamified learning (use of game-like elements in the
21	context of training (eg point systems, intergroup competition, leaderboards, scaffolded
22	learning with increasing challenge, medals or badges)
23	• Comparator: Traditional instruction or other forms of nongamified learning

1 • Outcomes:

2	- Educational outcomes: skill (eg CPR performance, other procedural performance,
3	scores in scenarios, time to task performance) immediately following training (eg end
4	of course), at 3 months, 6 months, 1 year. Knowledge eg test scores immediately
5	following training (eg end of course), at 3 months, 6 months, 1 year. Attitudes:
6	Participant satisfaction, learner preference, learner confidence
7	- Clinical outcomes: change in healthcare practitioner behavior at resuscitation in case
8	of real cardiac arrest (CPR quality, time to task completion, teamwork/crisis resource
9	management)
10	- Patient outcomes: ROSC, survival to hospital discharge; neurologic intact survival
11	 Process: costs and resources utilization
12	• Time frame: February 1, 2024, to October 30, 2024
13	Summary of Evidence
13 14	<i>Summary of Evidence</i> Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the
14	Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the
14 15	Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the strength of the existing recommendation, therefore no new SysRev is warranted.
14 15 16	Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the strength of the existing recommendation, therefore no new SysRev is warranted. <i>Treatment Recommendations (2024)</i>
14 15 16 17	Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the strength of the existing recommendation, therefore no new SysRev is warranted. <i>Treatment Recommendations (2024)</i> We suggest the use of gamified learning be considered as a component of resuscitation
14 15 16 17 18	Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the strength of the existing recommendation, therefore no new SysRev is warranted. <i>Treatment Recommendations (2024)</i> We suggest the use of gamified learning be considered as a component of resuscitation training for all types of BLS and ALS courses (weak recommendation, very low–certainty
14 15 16 17 18 19	Three new RCTs have been identified. ³⁶³⁻³⁶⁵ Including these studies would not alter the strength of the existing recommendation, therefore no new SysRev is warranted. <i>Treatment Recommendations (2024)</i> We suggest the use of gamified learning be considered as a component of resuscitation training for all types of BLS and ALS courses (weak recommendation, very low–certainty evidence).

1	Population, Intervention, Comparator, Outcome, and Time Frame				
2	• Population: Health care professionals or laypeople receiving resuscitation training				
3	(primary), and instructors teaching resuscitation courses (secondary)				
4	• Intervention: Debriefing with a cognitive aid, checklist, script or tool				
5	• Comparator: Debriefing without the use of a cognitive aid, checklist, script or tool				
6	• Outcomes:				
7	- Primary population: Patient outcomes: improved resuscitation performance in clinical				
8	environments; improved learning outcomes (knowledge and skill acquisition and				
9	retention); satisfaction of learning.				
10	- Secondary population: quality of teaching/debriefing; workload/ cognitive load of				
11	instructor/ debriefer				
12	• Time frame: January 1 to October 10, 2024				
13	3 Summary of Evidence				
14	As there were no new studies identified, this evidence update does not warrant a SysRev.				
15	Treatment Recommendations (2024)				
16	Consider using debriefing scripts to support instructors during debriefing in resuscitation				
17	programs because they may improve learning and performance. Instructors need to ensure they				
18	have a complete understanding of how the debriefing script should be used (good practice				
19	statement).				
20	Rapid Cycle Deliberate Practice in Resuscitation Training (EIT 6414, SysRev 2024, EvUp				
21	2025)				
22	A SysRev was conducted for 2024, ³⁶⁷ and details can be found in the 2024 CoSTR				
23	summary. ^{231,232} The complete EvUp is provided in Appendix B.				

1	Population, Intervention, Comparator, Outcome, and Time Frame
2	• Population: Learners in training for BLS or ALS
3	• Intervention: Instruction that uses rapid cycle deliberate practice
4	• Comparator: Traditional instruction or other forms of learning without rapid cycle
5	deliberate practice
6	• Outcomes: Knowledge acquisition and retention, skills acquisition and retention, skill
7	performance in real CPR, attitudes, willingness to help, and patients' survival
8	• Time frame: September 1, 2022, to October 30, 2024
9	Summary of Evidence
10	This update found 2 additional RCTs that do not change available evidence. ^{368,369}
11	Therefore, a new SysRev is not warranted.
12	Treatment Recommendations (2024)
13	We suggest that it may be reasonable to include rapid cycle deliberate practice in BLS
14	and ALS training (weak recommendation, very low-certainty evidence).
15	Team Competencies in Resuscitation Training (EIT 6415, SysRev 2024, EvUp 2025)
16	A SysRev was conducted for 2024,370 and details can be found in the 2024 CoSTR
17	summary. ^{231,232} The complete EvUp is provided in Appendix B.
18	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
19	• Population: Learners undertaking life support training in any setting
20	• Intervention: Life support training with a specific emphasis on team competencies
21	training
22	• Comparator: Life support training without specific emphasis on team competencies
23	training

Greif 85

1	• Outcomes: Patient survival (actual resuscitation), CPR skill performance at course				
2	completion (simulation), CPR skill performance (in actual resuscitation and simulation)				
3	<1 year and \geq 1 year of course completion; CPR quality (simulation) (at course				
4	completion, <1 year and \geq 1 year of course completion); confidence (at course completion				
5	and <1 year and ≥ 1 year of course completion), teamwork competencies (in actual				
6	resuscitation and simulation) (at course completion, <1 year and \geq 1 year of course				
7	completion); resources (time, equipment, cost).				
8	• Study design: In addition to the standard criteria, studies evaluating scoring systems (no				
9	relevant outcome), and studies with self-assessment as the only outcome were excluded.				
10	• Time frame: August 30, 2023, to November 6, 2024				
11	Summary of Evidence				
12	The 2 new studies identified are consistent in supporting previous findings; however,				
13	they do not substantially change the weight of evidence. ^{371,372} Therefore, a further SysRev or				
14	14 ScopRev is not warranted.				
15	Treatment Recommendations (2024)				
16	We suggest that teaching teamwork competencies be included in BLS and all kinds of				
17	advanced life support training (weak recommendation, very low quality of evidence).				
18	Topics Not Included in the 2025 Review				
19	• EIT 6100 Resuscitation training in low-income countries (ScopRev in 2020, ³⁷³ task				
20	force statement 2023) ³⁷⁴				
21	• EIT 6408 Spaced Learning (SyR 2020, ³⁷⁵ EvUp from 2022 in Appendix B available)				
22					

Greif 8	86
---------	----

- 2
- 3
- 4
- 5

6	References
0	References

7 1. International Liaison Committee on Resuscitation. ILCOR website. Accessed February

- 8 20, 2023. <u>https://www.ilcor.org/</u>
- 9 2. Morley et al. Methodology and Conflict of Interest Management: 2025 International

10 Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science

11 With Treatment Recommendations. *Circulation*. 2025:placeholder.

12 3. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y,

13 Glasziou P, DeBeer H, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles

14 and summary of findings tables. *J Clin Epidemiol*. 2011;64:383-394. doi:

15 10.1016/j.jclinepi.2010.04.026

16 4. Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR,

17 Smyth M, Scholefield BR, et al. 2023 International Consensus on Cardiopulmonary

18 Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:

19 Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support;

20 Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces.

- 21 Resuscitation. 2024;195:109992. doi: 10.1016/j.resuscitation.2023.109992
- 22 5. Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR,
- 23 Smyth M, Scholefield BR, et al. 2023 International Consensus on Cardiopulmonary
- 24 Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:
- 25 Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support;

1	Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces.
2	Circulation. 2023;148:e187-e280. doi: 10.1161/cir.000000000001179
3	6. Ko YC, Hsieh MJ, Schnaubelt S, Matsuyama T, Cheng A, Greif R. Disparities in
4	layperson resuscitation education: A scoping review. Am J Emerg Med. 2023;72:137-146. doi:
5	10.1016/j.ajem.2023.07.033
6	7. Munot S, Rugel EJ, Bray J, Redfern J, Yang G, Ngo L, Bauman A, Dang QM, Rock Z,
7	Marschner S, et al. Examining training and attitudes to basic life support in multi-ethnic
8	communities residing in New South Wales, Australia: A mixed-methods investigation. BMJ
9	Open. 2023;13:e073481. doi: 10.1136/bmjopen-2023-073481
10	8. Qin Z, Zheng S, Liu C, Ren Y, Wang R, Zhang S, Gu X, Li Y, Yan X, Xu T. The
11	knowledge, training, and willingness of first year students in Xuzhou, China to perform
12	bystander cardiopulmonary resuscitation: a cross-sectional study. Front Public Health.
13	2024;12:1444970. doi: 10.3389/fpubh.2024.1444970
14	9. Greif R, Bhanji F, Bigham BL, Bray J, Breckwoldt J, Cheng A, Duff JP, Gilfoyle E,
15	Hsieh MJ, Iwami T, et al. Education, Implementation, and Teams: 2020 International Consensus
16	on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment
17	Recommendations. Resuscitation. 2020;156:A188-a239. doi:
18	10.1016/j.resuscitation.2020.09.014
19	10. Greif R, Bhanji F, Bigham BL, Bray J, Breckwoldt J, Cheng A, Duff JP, Gilfoyle E,
20	Hsieh MJ, Iwami T, et al. Education, Implementation, and Teams: 2020 International Consensus
21	on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment
22	Recommendations. Circulation. 2020;142:S222-s283. doi: 10.1161/cir.00000000000896
23	11. Bray J, Nehme Z, Nguyen A, Lockey A, Finn J. A systematic review of the impact of
24	emergency medical service practitioner experience and exposure to out of hospital cardiac arrest
25	on patient outcomes. Resuscitation. 2020;155:134-142. doi: 10.1016/j.resuscitation.2020.07.025

1	12. Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J,				
2	Cheng A, Drennan IR, Liley HG, et al. 2022 International Consensus on Cardiopulmonary				
3	Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:				
4	Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support;				
5	Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces.				
6	Resuscitation. 2022;181:208-288. doi: 10.1016/j.resuscitation.2022.10.005				
7	13. Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J,				
8	Cheng A, Drennan IR, Liley HG, et al. 2022 International Consensus on Cardiopulmonary				
9	Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:				
10	Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support;				
11	Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces.				
12	Circulation. 2022;146:e483-e557. doi: 10.1161/cir.000000000000000000000000000000000000				
13	14. Benedict A, Pournami F, Prithvi AK, Nandakumar A, Prabhakar J, Jain N. Basic Life				
14	Support Guidance for Caregivers of NICU Graduates: Evaluation of Skill Transfer after				
15	Training. Journal of Child Science. 2022;12:e119-e124. doi: 10.1055/s-0042-1757147				
16	15. Brooks M, Jacobs L, Cazzell M. Impact of emergency management in a simulated home				
17	environment for caregivers of children who are tracheostomy dependent. J Spec Pediatr Nurs.				
18	2022;27:e12366. doi: 10.1111/jspn.12366				
19	16. Citolino Filho CM, Nogueira LS, Gomes VM, Polastri TF, Timerman S. Effectiveness of				
20	cardiopulmonary resuscitation training in the teaching of family members of cardiac patients.				
21	Rev Esc Enferm USP. 2022;56:e20210459. doi: 10.1590/1980-220X-REEUSP-2021-0459en				
22	17. Macken WL, Clarke N, Nadeem M, Coghlan D. Life After the Event: A Review of Basic				
23	Life Support Training for Parents Following Apparent Life-Threatening Events and Their				
24	Experience and Practices Following Discharge. <i>Ir Med J.</i> 2017;110:572.				

1 10. Intellette in L, Clemento I, me Cowan R. I resenting an automated exter	, Fern E, Clements F, McGowan R. Prescribing an	18. McLeod KA, Fern E, Clements F, McGowan H	L
---	---	--	---

2 defibrillator for children at increased risk of sudden arrhythmic death. *Cardiol Young*.

3 2017;27:1271-1279. doi: 10.1017/s1047951117000026

- 4 19. Patocka C, Lockey A, Lauridsen KG, Greif R. Impact of accredited advanced life support
- 5 course participation on in-hospital cardiac arrest patient outcomes: A systematic review. *Resusc*

6 Plus. 2023;14:100389. doi: 10.1016/j.resplu.2023.100389

7 20. Schnaubelt S, Veigl C, Snijders E, Abelairas Gómez C, Neymayer M, Anderson N,

8 Nabecker S, Greif R. Tailored Basic Life Support Training for Specific Layperson Populations-A

9 Scoping Review. J Clin Med. 2024;13 doi: 10.3390/jcm13144032

- 10 21. Ko YC, Hsieh MJ, Cheng A, Lauridsen KG, Sawyer TL, Bhanji F, Greif R. Faculty
- 11 Development Approaches for Life Support Courses: A Scoping Review. J Am Heart Assoc.
- 12 2022;11:e025661. doi: 10.1161/jaha.122.025661

13 22. Kiyozumi T, Ishigami N, Tatsushima D, Araki Y, Yoshimura Y, Saitoh D. Instructor

14 Development Workshops for Advanced Life Support Training Courses Held in a Fully Virtual

- 15 Space: Observational Study. JMIR Serious Games. 2022;10:e38952. doi: 10.2196/38952
- 16 23. Nabecker S, Balmer Y, van Goor S, Greif R. Piloting a Basic Life Support instructor
- 17 course: A short report. *Resusc Plus*. 2022;12:100325. doi: 10.1016/j.resplu.2022.100325

18 24. Iserbyt P, Madou T. The effect of content knowledge and repeated teaching on teaching

- and learning basic life support: a cluster randomised controlled trial. Acta Cardiol. 2022;77:616-
- 20 625. doi: 10.1080/00015385.2021.1969109
- 21 25. Madou T, Depaepe F, Ward P, Iserbyt P. The role of specialised content knowledge in
- teaching basic life support. *Health Education Journal*. 2023;82:555-568. doi:
- 23 10.1177/00178969231174685
- 24 26. Nabecker S CA, Breckwoldt J, de Raad T, Lennertz J, Alghaith A, Greif R, on behalf of
- 25 the Resuscitation Education, Implementation and Teams Task Force. Debriefing of clinical

- 1 resuscitation performance: EIT 6307 TF SR. 2024. Updated. Accessed 14 January.
- 2 https://costr.ilcor.org/document/debriefing-of-clinical-resuscitation-performance-eit-6307-tf-sr
- 3 27. Bleijenberg E, Koster RW, de Vries H, Beesems SG. The impact of post-resuscitation
- 4 feedback for paramedics on the quality of cardiopulmonary resuscitation. *Resuscitation*.
- 5 2017;110:1-5. doi: 10.1016/j.resuscitation.2016.08.034
- 6 28. Couper K, Kimani PK, Abella BS, Chilwan M, Cooke MW, Davies RP, Field RA, Gao F,
- 7 Quinton S, Stallard N, et al. The System-Wide Effect of Real-Time Audiovisual Feedback and
- 8 Postevent Debriefing for In-Hospital Cardiac Arrest: The Cardiopulmonary Resuscitation
- 9 Quality Improvement Initiative. Crit Care Med. 2015;43:2321-2331. doi:
- 10 10.1097/CCM.000000000001202
- 11 29. Couper K, Kimani PK, Davies RP, Baker A, Davies M, Husselbee N, Melody T, Griffiths
- 12 F, Perkins GD. An evaluation of three methods of in-hospital cardiac arrest educational
- 13 debriefing: The cardiopulmonary resuscitation debriefing study. *Resuscitation*. 2016;105:130-
- 14 137. doi: 10.1016/j.resuscitation.2016.05.005
- 15 30. Couper K, Mason AJ, Gould D, Nolan JP, Soar J, Yeung J, Harrison D, Perkins GD. The
- 16 impact of resuscitation system factors on in-hospital cardiac arrest outcomes across UK
- 17 hospitals: An observational study. *Resuscitation*. 2020;151:166-172. doi:
- 18 10.1016/j.resuscitation.2020.04.006
- 19 31. Edelson DP, Litzinger B, Arora V, Walsh D, Kim S, Lauderdale DS, Vanden Hoek TL,
- 20 Becker LB, Abella BS. Improving in-hospital cardiac arrest process and outcomes with
- 21 performance debriefing. Arch Intern Med. 2008;168:1063-1069. doi:
- 22 10.1001/archinte.168.10.1063
- 23 32. Malik AO, Nallamothu BK, Trumpower B, Kennedy M, Krein SL, Chinnakondepalli
- 24 KM, Hejjaji V, Chan PS. Association Between Hospital Debriefing Practices With Adherence to

1	Resuscitation Process Measures and Outcomes for In-Hospital Cardiac Arrest. Circ Cardiovasc
2	Qual Outcomes. 2020;13:e006695. doi: 10.1161/CIRCOUTCOMES.120.006695
3	33. Wolfe H, Zebuhr C, Topjian AA, Nishisaki A, Niles DE, Meaney PA, Boyle L, Giordano
4	RT, Davis D, Priestley M, et al. Interdisciplinary ICU cardiac arrest debriefing improves survival
5	outcomes*. Crit Care Med. 2014;42:1688-1695. doi: 10.1097/CCM.000000000000327
6	34. Heydarzadeh MM, A.; Azizi, S.; Hamedi, A.; Alavi, SS. Impact of video-recorded
7	debriefing and neonatal resuscitation program workshops on short-term outcomes and quality of
8	neonatal resuscitation. Iranian Journal of Neonatology. 2020;2020 Jun: 11(2)
9	35. Skare C, Boldingh AM, Kramer-Johansen J, Calisch TE, Nakstad B, Nadkarni V,
10	Olasveengen TM, Niles DE. Video performance-debriefings and ventilation-refreshers improve
11	quality of neonatal resuscitation. Resuscitation. 2018;132:140-146. doi:
12	10.1016/j.resuscitation.2018.07.013
13	36. Skare C, Calisch TE, Saeter E, Rajka T, Boldingh AM, Nakstad B, Niles DE, Kramer-
14	Johansen J, Olasveengen TM. Implementation and effectiveness of a video-based debriefing
15	programme for neonatal resuscitation. Acta Anaesthesiol Scand. 2018;62:394-403. doi:
16	10.1111/aas.13050
17	37. Andersen LW, Berg KM, Chase M, Cocchi MN, Massaro J, Donnino MW. Acute
18	respiratory compromise on inpatient wards in the United States: Incidence, outcomes, and factors
19	associated with in-hospital mortality. Resuscitation. 2016;105:123-129. doi:
20	https://dx.doi.org/10.1016/j.resuscitation.2016.05.014
21	38. Maharaj R, Raffaele I, Wendon J. Rapid response systems: a systematic review and meta-
22	analysis. Critical care (London, England). 2015;19:254. doi: https://dx.doi.org/10.1186/s13054-
23	<u>015-0973-y</u>
24	39. Winters BD. Rapid response systems: Going beyond cardiac arrest and mortality. <i>Critical</i>
25	Care Medicine. 2013;41:911-912. doi: https://dx.doi.org/10.1097/CCM.0b013e3182770fec

1	40. Allan KA Y, J, Flaim B, Aves T, Olejarz M, Cheng A, Kishibe T, Greif R on behalf of				
2	the International Liaison Committee on Resuscitation from rom the Education Implementation				
3	Teams Task Force (EIT) Medical Emergency Systems/ Rapid Response Teams for adult in-				
4	hospital patients: EIT 6309 TF SR. 2024. Updated. Accessed 14 January.				
5	https://costr.ilcor.org/document/medical-emergency-systems-rapid-response-teams-for-adult-in-				
6	hospital-patients-eit-6309-tf-sr				
7	41. Al-Omari A, Al Mutair A, Aljamaan F. Outcomes of rapid response team implementation				
8	in tertiary private hospitals: a prospective cohort study. International journal of emergency				
9	medicine. 2019;12:31. doi: https://dx.doi.org/10.1186/s12245-019-0248-5				
10	42. Jones D, Bellomo R, Bates S, Warrillow S, Goldsmith D, Hart G, Opdam H, Gutteridge				
11	G. Long term effect of a medical emergency team on cardiac arrests in a teaching hospital.				
12	Critical care (London, England). 2005;9:R808-815. doi: https://dx.doi.org/10.1186/cc3906				
13	43. Jones D, George C, Hart GK, Bellomo R, Martin J. Introduction of medical emergency				
14	teams in Australia and New Zealand: a multi-centre study. Critical care (London, England).				
15	2008;12:R46. doi: https://dx.doi.org/10.1186/cc6857				
16	44. Kenward G, Castle N, Hodgetts T, Shaikh L. Evaluation of a medical emergency team				
17	one year after implementation. Resuscitation. 2004;61:257-263. doi:				
18	https://dx.doi.org/10.1016/j.resuscitation.2004.01.021				
19	45. Oh TK, Kim S, Lee DS, Min H, Choi YY, Lee EY, Yun M-A, Lee YJ, Hon PS, Kim K,				
20	et al. A rapid response system reduces the incidence of in-hospital postoperative				
21	cardiopulmonary arrest: a retrospective study. Un systeme de reponse rapide diminue l'incidence				
22	des arrets cardiopulmonaires postoperatoires en milieu hospitalier : une etude retrospective.				
23	2018;65:1303-1313. doi: https://dx.doi.org/10.1007/s12630-018-1200-5				
24	46. Rothschild JM, Woolf S, Finn KM, Friedberg MW, Lemay C, Furbush KA, Williams				

25 DH, Bates DW. A controlled trial of a rapid response system in an academic medical center.

- 1 Joint Commission journal on quality and patient safety. 2008;34:417-365. doi:
- 2 <u>https://dx.doi.org/10.1016/s1553-7250(08)34052-5</u>
- 3 47. Shah SK, Cardenas VJ, Jr., Kuo Y-F, Sharma G. Rapid response team in an academic
- 4 institution: does it make a difference? *Chest.* 2011;139:1361-1367. doi:
- 5 <u>https://dx.doi.org/10.1378/chest.10-0556</u>
- 6 48. Yang E, Lee H, Lee S-M, Kim S, Ryu HG, Lee HJ, Lee J, Oh S-Y. Effectiveness of a
- 7 daytime rapid response system in hospitalized surgical ward patients. *Acute and critical care*.
- 8 2020;35:77-86. doi: <u>https://dx.doi.org/10.4266/acc.2019.00661</u>
- 9 49. Chen J, Ou L, Hillman K, Parr M, Flabouris A, Green M. Impact of a standardised rapid
- 10 response system on clinical outcomes of female patients: an interrupted time series approach.
- 11 BMJ open quality. 2022;11 doi: <u>https://dx.doi.org/10.1136/bmjoq-2021-001614</u>
- 12 50. Aitken LM, Chaboyer W, Vaux A, Crouch S, Burmeister E, Daly M, Joyce C. Effect of a
- 13 2-tier rapid response system on patient outcome and staff satisfaction. Australian critical care :
- 14 official journal of the Confederation of Australian Critical Care Nurses. 2015;28:107-115. doi:
- 15 https://dx.doi.org/10.1016/j.aucc.2014.10.044
- 16 51. Al-Qahtani S, Al-Dorzi HM, Tamim HM, Hussain S, Fong L, Taher S, Al-Knawy BA,
- 17 Arabi Y. Impact of an intensivist-led multidisciplinary extended rapid response team on hospital-
- 18 wide cardiopulmonary arrests and mortality. *Critical care medicine*. 2013;41:506-517. doi:
- 19 https://dx.doi.org/10.1097/CCM.0b013e318271440b
- 20 52. Bader MK, Neal B, Johnson L, Pyle K, Brewer J, Luna M, Stalcup C, Whittaker M,
- 21 Ritter M. Rescue me: saving the vulnerable non-ICU patient population. Joint Commission
- 22 journal on quality and patient safety. 2009;35:199-205. doi: https://dx.doi.org/10.1016/s1553-
- 23 <u>7250(09)35027-8</u>

- 1 53. Baxter AD, Cardinal P, Hooper J, Patel R. Rapid response systems The real merit of
- 2 MERIT? [9]. Critical Care Medicine. 2008;36:655-656. doi:
- 3 https://dx.doi.org/10.1097/CCM.0B013E3181629FDD
- 4 54. Beitler JR, Link N, Bails DB, Hurdle K, Chong DH. Reduction in hospital-wide mortality
- 5 following implementation of a rapid response team: A long-term cohort study. *Critical Care*.
- 6 2011:R269. doi: <u>https://dx.doi.org/10.1186/cc10547</u>
- 7 55. Bellomo R, Goldsmith D, Uchino S, Buckmaster J, Hart GK, Opdam H, Silvester W,
- 8 Doolan L, Gutteridge G. A prospective before-and-after trial of a medical emergency team.
- 9 Medical Journal of Australia. 2003;179:283-287. doi: https://dx.doi.org/10.5694/j.1326-
- 10 <u>5377.2003.tb05548.x</u>
- 11 56. Benson L, Mitchell C, Link M, Carlson G, Fisher J. Using an advanced practice nursing
- 12 model for a rapid response team. Joint Commission journal on quality and patient safety.
- 13 2008;34:743-747. doi: <u>https://dx.doi.org/10.1016/s1553-7250(08)34097-5</u>
- 14 57. Bhonagiri D, Lander H, Green M, Straney L, Jones D, Pilcher D. Reduction of in-hospital
- 15 cardiac arrest rates in intensive care-equipped New South Wales hospitals in association with
- 16 implementation of Between the Flags rapid response system. *Internal medicine journal*.
- 17 2021;51:375-384. doi: <u>https://dx.doi.org/10.1111/imj.14812</u>
- 18 58. Bristow PJ, Hillman KM, Chey T, Daffurn K, Jacques TC, Norman SL, Bishop GF,
- 19 Simmons EG. Rates of in-hospital arrests, deaths and intensive care admissions: the effect of a
- 20 medical emergency team. *The Medical journal of Australia*. 2000;173:236-240. doi:
- 21 <u>https://dx.doi.org/10.5694/j.1326-5377.2000.tb125627.x</u>
- 22 59. Buist MD, Moore GE, Bernard SA, Waxman BP, Anderson JN, Nguyen TV. Effects of a
- 23 medical emergency team on reduction of incidence of and mortality from unexpected cardiac
- 24 arrests in hospital: preliminary study. BMJ (Clinical research ed). 2002;324:387-390. doi:
- 25 <u>https://dx.doi.org/10.1136/bmj.324.7334.387</u>

1	60.	Chan PS, Khalid A, Longmore I	LS, Berg RA,	, Kosiborod M, Sj	pertus JA. Hospital-wide
---	-----	-------------------------------	--------------	-------------------	--------------------------

2 code rates and mortality before and after implementation of a rapid response team. JAMA.

3 2008;300:2506-2513. doi: <u>https://dx.doi.org/10.1001/jama.2008.715</u>

- 4 61. Chen J, Ou L, Flabouris A, Hillman K, Bellomo R, Parr M. Impact of a standardized
- 5 rapid response system on outcomes in a large healthcare jurisdiction. *Resuscitation*.
- 6 2016;107:47-56. doi: <u>https://dx.doi.org/10.1016/j.resuscitation.2016.07.240</u>
- 7 62. Chen J, Ou L, Hillman K, Flabouris A, Bellomo R, Hollis SJ, Assareh H. The impact of
- 8 implementing a rapid response system: a comparison of cardiopulmonary arrests and mortality
- 9 among four teaching hospitals in Australia. *Resuscitation*. 2014;85:1275-1281. doi:
- 10 <u>https://dx.doi.org/10.1016/j.resuscitation.2014.06.003</u>
- 11 63. Dacey MJ, Mirza ER, Wilcox V, Doherty M, Mello J, Boyer A, Gates J, Brothers T,
- 12 Baute R. The effect of a rapid response team on major clinical outcome measures in a
- 13 community hospital. *Critical care medicine*. 2007;35:2076-2082. doi:
- 14 https://dx.doi.org/10.1097/01.ccm.0000281518.17482.ee
- 15 64. Davis DP, Aguilar SA, Graham PG, Lawrence B, Sell RE, Minokadeh A, Husa RD. A
- 16 novel configuration of a traditional rapid response team decreases non-intensive care unit arrests
- 17 and overall hospital mortality. *Journal of hospital medicine*. 2015;10:352-357. doi:
- 18 <u>https://dx.doi.org/10.1002/jhm.2338</u>
- 19 65. DeVita MA, Braithwaite RS, Mahidhara R, Stuart S, Foraida M, Simmons RL. Use of
- 20 medical emergency team responses to reduce hospital cardiopulmonary arrests. *Quality & safety*
- 21 *in health care*. 2004;13:251-254. doi: <u>https://dx.doi.org/10.1136/qhc.13.4.251</u>
- 22 66. Frost SA, Chapman A, Aneman A, Chen J, Parr MJ, Hillman K. Hospital outcomes
- associated with introduction of a two-tiered response to the deteriorating patient. Critical care
- 24 and resuscitation : journal of the Australasian Academy of Critical Care Medicine. 2015;17:77-
- 25 82.

1 07. 00011, 11011001 D7. 1011 05, D01 15, 50000 C1, 100 00115, 110 111 000 01 0	1	67.	Gao H, Harrison DA, Parry GJ, Daly K, Subbe CP, Rowan K. The impact of the
--	---	-----	--

- 2 introduction of critical care outreach services in England: a multicentre interrupted time-series
- 3 analysis. Critical care (London, England). 2007;11:R113. doi: https://dx.doi.org/10.1186/cc6163
- 4 68. Goncales PDS, Polessi JA, Bass LM, Santos GdPD, Yokota PKO, Laselva CR,
- 5 Fernandes Junior C, Cendoroglo Neto M, Estanislao M, Teich V, et al. Reduced frequency of
- 6 cardiopulmonary arrests by rapid response teams. *Einstein (Sao Paulo, Brazil)*. 2012;10:442-448.
- 7 doi: https://dx.doi.org/10.1590/s1679-45082012000400009
- 8 69. Gong X-Y, Wang Y-G, Shao H-Y, Lan P, Yan R-S, Pan K-H, Zhou J-C. A rapid
- 9 response team is associated with reduced overall hospital mortality in a Chinese tertiary hospital:
- 10 a 9-year cohort study. Annals of translational medicine. 2020;8:317. doi:
- 11 <u>https://dx.doi.org/10.21037/atm.2020.02.147</u>
- 12 70. Hatler C, Mast D, Bedker D, Johnson R, Corderella J, Torres J, King D, Plueger M.
- 13 Implementing a rapid response team to decrease emergencies outside the ICU: one hospital's
- 14 experience. *Medsurg nursing : official journal of the Academy of Medical-Surgical Nurses.*
- 15 2009;18:84-126.
- 16 71. Jolley J, Bendyk H, Holaday B, Lombardozzi KAK, Harmon C. Rapid response teams:
- 17 do they make a difference? *Dimensions of critical care nursing : DCCN.* 2007;26:253-252. doi:
- 18 https://dx.doi.org/10.1097/01.DCC.0000297401.67854.78
- 19 72. Jung B, Daurat A, De Jong A, Chanques G, Mahul M, Monnin M, Molinari N, Jaber S.
- 20 Rapid response team and hospital mortality in hospitalized patients. *Intensive care medicine*.
- 21 2016;42:494-504. doi: <u>https://dx.doi.org/10.1007/s00134-016-4254-2</u>
- 22 73. Kim Y, Lee DS, Min H, Choi YY, Lee EY, Song I, Park JS, Cho Y-J, Jo YH, Yoon HI, et
- 23 al. Effectiveness Analysis of a Part-Time Rapid Response System During Operation Versus
- 24 Nonoperation. *Critical care medicine*. 2017;45:e592-e599. doi:
- 25 <u>https://dx.doi.org/10.1097/CCM.00000000002314</u>

1 74. Kollef MH, Heard K, Chen Y, Lu C, Martin N, Bailey T. Mortality and Length of Stay

- 2 Trends Following Implementation of a Rapid Response System and Real-Time Automated
- 3 Clinical Deterioration Alerts. American journal of medical quality : the official journal of the
- 4 American College of Medical Quality. 2017;32:12-18. doi:
- 5 https://dx.doi.org/10.1177/1062860615613841
- 6 75. Konrad D, Jaderling G, Bell M, Granath F, Ekbom A, Martling C-R. Reducing in-
- 7 hospital cardiac arrests and hospital mortality by introducing a medical emergency team.
- 8 Intensive care medicine. 2010;36:100-106. doi: <u>https://dx.doi.org/10.1007/s00134-009-1634-x</u>
- 9 76. Lee HY, Lee J, Lee S-M, Kim S, Yang E, Lee HJ, Lee H, Ryu HG, Oh S-Y, Ha EJ, et al.
- 10 Effect of a rapid response system on code rates and in-hospital mortality in medical wards. Acute
- 11 and critical care. 2019;34:246-254. doi: https://dx.doi.org/10.4266/acc.2019.00668
- 12 77. Lighthall GK, Parast LM, Rapoport L, Wagner TH. Introduction of a rapid response
- 13 system at a United States veterans affairs hospital reduced cardiac arrests. Anesthesia and
- 14 analgesia. 2010;111:679-686. doi: https://dx.doi.org/10.1213/ANE.0b013e3181e9c3f3
- 15 78. Lim SY, Park SY, Park HK, Kim M, Park HY, Lee B, Lee JH, Jung EJ, Jeon K, Park C-
- 16 M, et al. Early impact of medical emergency team implementation in a country with limited
- 17 medical resources: a before-and-after study. *Journal of critical care*. 2011;26:373-378. doi:
- 18 <u>https://dx.doi.org/10.1016/j.jcrc.2010.08.019</u>
- 19 79. Ludikhuize J, Brunsveld-Reinders AH, Dijkgraaf MGW, Smorenburg SM, de Rooij
- 20 SEJA, Adams R, de Maaijer PF, Fikkers BG, Tangkau P, de Jonge E. Outcomes Associated With
- 21 the Nationwide Introduction of Rapid Response Systems in The Netherlands. Critical care
- 22 *medicine*. 2015;43:2544-2551. doi: <u>https://dx.doi.org/10.1097/CCM.00000000001272</u>
- 23 80. Medina-Rivera B, Campos-Santiago Z, Palacios AT, Rodriguez-Cintron W. The effect of
- the medical emergency team on unexpected cardiac arrest and death at the VA Caribbean
- 25 Healthcare System: A retrospective study. *Critical Care and Shock*. 2010;13:98-105.

- 1 81. Menon VP, Prasanna P, Edathadathil F, Balachandran S, Moni M, Sathyapalan D, Pai
- 2 RD, Singh S. A Quality Improvement Initiative to Reduce "Out-of-ICU" Cardiopulmonary
- 3 Arrests in a Tertiary Care Hospital in India: A 2-Year Learning Experience. Quality management
- 4 in health care. 2018;27:39-49. doi: https://dx.doi.org/10.1097/QMH.000000000000160
- 5 82. Moon A, Cosgrove JF, Lea D, Fairs A, Cressey DM. An eight year audit before and after
- 6 the introduction of modified early warning score (MEWS) charts, of patients admitted to a
- 7 tertiary referral intensive care unit after CPR. *Resuscitation*. 2011;82:150-154. doi:
- 8 https://dx.doi.org/10.1016/j.resuscitation.2010.09.480
- 9 83. Moroseos T, Bidwell K, Rui L, Fuhrman L, Gibran NS, Honari S, Pham TN. Rapid
- 10 response team implementation on a burn surgery/acute care ward. Journal of burn care &
- 11 research : official publication of the American Burn Association. 2014;35:21-27. doi:
- 12 https://dx.doi.org/10.1097/BCR.0b013e3182a2acae
- 13 84. Noyes AM, Gluck JA, Madison D, Madison B, Madison T, Coleman CI, Mather J,
- 14 Kluger J. Reduction of Cardiac Arrests: The Experience of a Novel Service Centric Medical
- 15 Emergency Team. *Connecticut medicine*. 2015;79:13-18.
- 16 85. Offner PJ, Heit J, Roberts R. Implementation of a rapid response team decreases cardiac
- 17 arrest outside of the intensive care unit. *The Journal of trauma*. 2007;62:1223-1228. doi:
- 18 https://dx.doi.org/10.1097/TA.0b013e31804d4968
- 19 86. Park Y, Ahn J-J, Kang BJ, Lee YS, Ha S-O, Min J-S, Cho W-H, Na S-H, Lee D-H, Park
- 20 S-Y, et al. Rapid Response Systems Reduce In-Hospital Cardiopulmonary Arrest: A Pilot Study
- and Motivation for a Nationwide Survey. Korean journal of critical care medicine. 2017;32:231-
- 22 239. doi: <u>https://dx.doi.org/10.4266/kjccm.2017.00024</u>
- 23 87. Rothberg MB, Belforti R, Fitzgerald J, Friderici J, Keyes M. Four years' experience with
- 24 a hospitalist-led medical emergency team: an interrupted time series. Journal of hospital
- 25 *medicine*. 2012;7:98-103. doi: <u>https://dx.doi.org/10.1002/jhm.953</u>

1	88.	Sabahi M, Fanaei SA, Ziaee SA, Falsafi FS. Efficacy of a rapid response team on
2	reducir	ng the incidence and mortality of unexpected cardiac arrests. Trauma monthly.
3	2012;1	7:270-274. doi: https://dx.doi.org/10.5812/traumamon.4170
4	89.	Santamaria J, Tobin A, Holmes J. Changing cardiac arrest and hospital mortality rates
5	throug	h a medical emergency team takes time and constant review. Critical care medicine.
6	2010;3	8:445-450. doi: https://dx.doi.org/10.1097/CCM.0b013e3181cb0ff1
7	90.	Sarani B, Palilonis E, Sonnad S, Bergey M, Sims C, Pascual JL, Schweickert W. Clinical
8	emerge	encies and outcomes in patients admitted to a surgical versus medical service.
9	Resusc	itation. 2011;82:415-418. doi: https://dx.doi.org/10.1016/j.resuscitation.2010.12.005
10	91.	Segon A, Ahmad S, Segon Y, Kumar V, Friedman H, Ali M. Effect of a rapid response
11	team of	n patient outcomes in a community-based teaching hospital. Journal of graduate medical
12	educat	ion. 2014;6:61-64. doi: https://dx.doi.org/10.4300/JGME-D-13-00165.1
13	92.	Simmes FM, Schoonhoven L, Mintjes J, Fikkers BG, van der Hoeven JG. Incidence of
14	cardiac	c arrests and unexpected deaths in surgical patients before and after implementation of a
15	rapid r	esponse system. Annals of intensive care. 2012;2:20. doi: https://dx.doi.org/10.1186/2110-
16	<u>5820-2</u>	2-20
17	93.	Vazquez R, Gheorghe C, Grigoriyan A, Palvinskaya T, Amoateng-Adjepong Y,
18	Manthe	ous CA. Enhanced end-of-life care associated with deploying a rapid response team: a
19	pilot st	udy. Journal of hospital medicine. 2009;4:449-452. doi:
20	https://	/dx.doi.org/10.1002/jhm.451
21	94.	Viana MV, Nunes DSL, Teixeira C, Vieira SRR, Torres G, Brauner JS, Muller H, Butelli

- 22 TCD, Boniatti MM. Changes in cardiac arrest profiles after the implementation of a Rapid
- 23 Response Team. Modificacoes no perfil de paradas cardiacas apos implantacao de um Time de
- 24 Resposta Rapida. 2021;33:96-101. doi: https://dx.doi.org/10.5935/0103-507X.20210010

1	95.	Young AM, Strobel RJ	, Rotar E, Norman A	, Henrich M, Mehaffe	y JH, Brady W, To	eman
-	15.	i oung rinn, buober ru	, notai 12, norman n	, month in, month	<i>j</i> 511, D 100 <i>y</i> 1 , 1	UIII

- 2 NR. Implementation of a non-intensive-care unit medical emergency team improves failure to
- 3 rescue rates in cardiac surgery patients. Journal of Thoracic and Cardiovascular Surgery.
- 4 2023;165:1861-1872.e1865. doi: <u>https://dx.doi.org/10.1016/j.jtcvs.2022.07.015</u>
- 5 96. Yousaf M, Bano S, Attaur-Rehman M, Nazar CMJ, Qadeer A, Khudaidad S, Hussain
- 6 SW. Comparison of Hospital-Wide Code Rates and Mortality Before and After the
- 7 Implementation of a Rapid Response Team. *Cureus*. 2018;10:e2043. doi:
- 8 https://dx.doi.org/10.7759/cureus.2043
- 9 97. Haegdorens F, Van Bogaert P, Roelant E, De Meester K, Misselyn M, Wouters K,
- 10 Monsieurs KG. The introduction of a rapid response system in acute hospitals: A pragmatic
- 11 stepped wedge cluster randomised controlled trial. *Resuscitation*. 2018;129:127-134. doi:
- 12 https://dx.doi.org/10.1016/j.resuscitation.2018.04.018
- 13 98. Jeddian A, Hemming K, Lindenmeyer A, Rashidian A, Sayadi L, Jafari N, Malekzadeh
- 14 R, Marshall T. Evaluation of a critical care outreach service in a middle-income country: A
- 15 stepped wedge cluster randomized trial and nested qualitative study. *Journal of critical care*.
- 16 2016;36:212-217. doi: <u>https://dx.doi.org/10.1016/j.jcrc.2016.07.018</u>
- 17 99. Piquette D, Fowler RA. Do medical emergency teams improve the outcomes of in-
- 18 hospital patients? CMAJ Canadian Medical Association Journal. 2005;173:599-600. doi:
- 19 <u>https://dx.doi.org/10.1503/cmaj.051005</u>
- 20 100. Jamous SE, Kouatly I, Irani J, Badr LK. Implementing a Rapid Response Team: A
- 21 Quality Improvement Project in a Low- to Middle-Income Country. *Dimensions of critical care*
- 22 nursing : DCCN. 2023;42:171-178. doi: https://dx.doi.org/10.1097/DCC.000000000000584
- 23 101. Song I-A, Lee Y-K, Park J-W, Kim J-K, Koo K-H. Effectiveness of rapid response
- system in patients with hip fractures. *Injury*. 2021;52:1841-1845. doi:
- 25 <u>https://dx.doi.org/10.1016/j.injury.2021.04.029</u>

- 1 102. Braithwaite RS, DeVita MA, Mahidhara R, Simmons RL, Stuart S, Foraida M. Use of
- 2 medical emergency team (MET) responses to detect medical errors. Quality & safety in health
- 3 *care*. 2004;13:255-259. doi: <u>https://dx.doi.org/10.1136/qhc.13.4.255</u>
- 4 103. Institute for Healthcare Improvement. Improvement Areas. Accessed 14 January.
- 5 http://www.ihi.org/Topics/RapidResponseTeams/Pages/default.aspx
- 6 104. DeVita MA, Smith GB, Adam SK, Adams-Pizarro I, Buist M, Bellomo R, Bonello R,
- 7 Cerchiari E, Farlow B, Goldsmith D, et al. "Identifying the hospitalised patient in crisis"-A
- 8 consensus conference on the afferent limb of Rapid Response Systems. *Resuscitation*.
- 9 2010;81:375-382. doi: <u>https://dx.doi.org/10.1016/j.resuscitation.2009.12.008</u>
- 10 105. Ko YC BJ, Lee TY, Lockey A, Cheng A, Greif R on behalf of the International Liaison
- 11 Committee on Resuscitation Education, Implementation and Teams Task Force (EIT) Life
- 12 Support Task Force. EIT 6310 System Performance Improvement: EIT 6310 TF SR. 2024.
- 13 Updated. Accessed 14 January. https://costr.ilcor.org/document/eit-6310-system-performance-
- 14 improvement-eit-6310-tf-sr
- 15 106. Auricchio A, Caputo ML, Baldi E, Klersy C, Benvenuti C, Cianella R, De Ferrari GM,
- 16 Moccetti T. Gender-specific differences in return-to-spontaneous circulation and outcome after
- 17 out-of-hospital cardiac arrest: Results of sixteen-year-state-wide initiatives. Resusc Plus.
- 18 2020;4:100038. doi: 10.1016/j.resplu.2020.100038
- 19 107. Blewer AL, Ho AFW, Shahidah N, White AE, Pek PP, Ng YY, Mao DR, Tiah L, Chia
- 20 MY, Leong BS, et al. Impact of bystander-focused public health interventions on
- 21 cardiopulmonary resuscitation and survival: a cohort study. Lancet Public Health. 2020;5:e428-
- 22 e436. doi: 10.1016/s2468-2667(20)30140-7
- 23 108. Dong X, Wang L, Xu H, Ye Y, Zhou Z, Zhang L. Effect of a Targeted Ambulance
- 24 Treatment Quality Improvement Programme on Outcomes from Out-of-Hospital Cardiac Arrest:
- A Metropolitan Citywide Intervention Study. J Clin Med. 2022;12 doi: 10.3390/jcm12010163

	Greif 102
1	109. Freedman AJ, Madsen EC, Lowrie L. Establishing a Quality Improvement Program for
2	Pediatric In-hospital Cardiac Arrest. Pediatr Qual Saf. 2023;8:e706. doi:
3	10.1097/pq9.000000000000000000000000000000000000
4	110. Kim GW, Lee DK, Kang BR, Jeong WJ, Lee CA, Oh YT, Kim YJ, Park SM. A
5	multidisciplinary approach for improving the outcome of out-of-hospital cardiac arrest in South
6	Korea. Eur J Emerg Med. 2020;27:46-53. doi: 10.1097/mej.0000000000000612
7	111. Kim GW, Moon HJ, Lim H, Kim YJ, Lee CA, Park YJ, Lee KM, Woo JH, Cho JS, Jeong
8	WJ, et al. Effects of Smart Advanced Life Support protocol implementation including CPR
9	coaching during out-of-hospital cardiac arrest. Am J Emerg Med. 2022;56:211-217. doi:
10	10.1016/j.ajem.2022.03.050
11	112. Kim JY, Cho H, Park JH, Song JH, Moon S, Lee H, Yang HJ, Tolles J, Bosson N, Lewis
12	RJ. Application of the "Plan-Do-Study-Act" Model to Improve Survival after Cardiac Arrest in
13	Korea: A Case Study. Prehosp Disaster Med. 2020;35:46-54. doi: 10.1017/s1049023x19005156
14	113. Lee DE, Ryoo HW, Moon S, Park JH, Shin SD. Effect of citywide enhancement of the
15	chain of survival on good neurologic outcomes after out-of-hospital cardiac arrest from 2008 to
16	2017. PLoS One. 2020;15:e0241804. doi: 10.1371/journal.pone.0241804
17	114. Li T, Essex K, Ebert D, Levinsky B, Gilley C, Luo D, Alper E, Barbara P, Rolston DM,
18	Berkowitz J, et al. Resuscitation Quality Improvement® (RQI®) HeartCode Complete®
19	program improves chest compression rate in real world out-of hospital cardiac arrest patients.
20	Resuscitation. 2023;188:109833. doi: 10.1016/j.resuscitation.2023.109833
21	115. Lin HY, Chien YC, Lee BC, Wu YL, Liu YP, Wang TL, Ko PC, Chong KM, Wang HC,

- Huang EP, et al. Outcomes of out-of-hospital cardiac arrests after a decade of system-wide 22
- initiatives optimising community chain of survival in Taipei city. Resuscitation. 2022;172:149-23
- 158. doi: 10.1016/j.resuscitation.2021.12.027 24

1	116. Lyngby RM, Quinn T, Oelrich RM, Nikoletou D, Gregers MCT, Kjølbye JS, Ersbøll AK,
2	Folke F. Association of Real-Time Feedback and Cardiopulmonary-Resuscitation Quality
3	Delivered by Ambulance Personnel for Out-of-Hospital Cardiac Arrest. J Am Heart Assoc.
4	2023;12:e029457. doi: 10.1161/jaha.123.029457
5	117. McCoy C, Keshvani N, Warsi M, Brown LS, Girod C, Chu ES, Hegde AA. Empowering
6	telemetry technicians and enhancing communication to improve in-hospital cardiac arrest
7	survival. BMJ Open Qual. 2023;12 doi: 10.1136/bmjoq-2022-002220
8	118. Nehme Z, Ball J, Stephenson M, Walker T, Stub D, Smith K. Effect of a resuscitation
9	quality improvement programme on outcomes from out-of-hospital cardiac arrest. Resuscitation.
10	2021;162:236-244. doi: 10.1016/j.resuscitation.2021.03.007
11	119. Riyapan S, Sanyanuban P, Chantanakomes J, Roongsaenthong P, Somboonkul B,
12	Rangabpai W, Thirawattanasoot N, Pansiritanachot W, Phinyo N, Konwitthayasin P, et al.
13	Enhancing survival outcomes in developing emergency medical service system: Continuous
14	quality improvement for out-of-hospital cardiac arrest. Resusc Plus. 2024;19:100683. doi:
15	10.1016/j.resplu.2024.100683
16	120. Vaillancourt C, Charette M, Lanos C, Godbout J, Buhariwalla H, Dale-Tam J, Nemnom
17	MJ, Brehaut J, Wells G, Stiell I. Multi-phase implementation of automated external defibrillator
18	use by nurses during in-hospital cardiac arrest and its impact on survival. Resuscitation.
19	2024;197:110148. doi: 10.1016/j.resuscitation.2024.110148
20	121. Adabag S, Hodgson L, Garcia S, Anand V, Frascone R, Conterato M, Lick C, Wesley K,
21	Mahoney B, Yannopoulos D. Outcomes of sudden cardiac arrest in a state-wide integrated
22	resuscitation program: Results from the Minnesota Resuscitation Consortium. Resuscitation.
23	2017;110:95-100. doi: 10.1016/j.resuscitation.2016.10.029
24	122. Anderson ML, Nichol G, Dai D, Chan PS, Thomas L, Al-Khatib SM, Berg RA, Bradley

SM, Peterson ED. Association between hospital process composite performance and patient
 © 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1 outcomes after in-hospital cardiac arrest care. JAMA Cardiology. 2016;1:37-45. d
--

2 10.1001/jamacardio.2015.0275

3 123. Bradley SM, Huszti E, Warren SA, Merchant RM, Sayre MR, Nichol G. Duration of

4 hospital participation in Get With the Guidelines-Resuscitation and survival of in-hospital

- 5 cardiac arrest. *Resuscitation*. 2012;83:1349-1357. doi: 10.1016/j.resuscitation.2012.03.014
- 6 124. Couper K, Kimani PK, Abella BS, Chilwan M, Cooke MW, Davies RP, Field RA, Gao F,
- 7 Quinton S, Stallard N, et al. The system-wide effect of real-time audiovisual feedback and

8 postevent debriefing for in-hospital cardiac arrest: The cardiopulmonary resuscitation quality

- 9 improvement initiative. *Critical Care Medicine*. 2015;43:2321-2331. doi:
- 10 10.1097/CCM.000000000001202
- 11 125. Davis DP, Graham PG, Husa RD, Lawrence B, Minokadeh A, Altieri K, Sell RE. A

12 performance improvement-based resuscitation programme reduces arrest incidence and increases

13 survival from in-hospital cardiac arrest. *Resuscitation*. 2015;92:63-69. doi:

14 10.1016/j.resuscitation.2015.04.008

- 15 126. Del Rios M, Weber J, Pugach O, Nguyen H, Campbell T, Islam S, Stein Spencer L,
- 16 Markul E, Bunney EB, Vanden Hoek T. Large urban center improves out-of-hospital cardiac
- 17 arrest survival. *Resuscitation*. 2019;139:234-240. doi: 10.1016/j.resuscitation.2019.04.019

18 127. Ewy GA, Sanders AB. Alternative Approach to Improving Survival of Patients With Out-

- 19 of-Hospital Primary Cardiac Arrest. Journal of the American College of Cardiology.
- 20 2013;61:113-118. doi: 10.1016/j.jacc.2012.06.064
- 21 128. Grunau B, Kawano T, Dick W, Straight R, Connolly H, Schlamp R, Scheuermeyer FX,
- 22 Fordyce CB, Barbic D, Tallon J, et al. Trends in care processes and survival following
- 23 prehospital resuscitation improvement initiatives for out-of-hospital cardiac arrest in British
- 24 Columbia, 2006-2016. *Resuscitation*. 2018;125:118-125. doi:
- 25 10.1016/j.resuscitation.2018.01.049

1	129. Hopkins CL, Burk C, Moser S, Meersman J, Baldwin C, Youngquist ST. Implementation
2	of pit crew approach and cardiopulmonary resuscitation metrics for out-of-hospital cardiac arrest
3	improves patient survival and neurological outcome. Journal of the American Heart Association.
4	2016;5 doi: 10.1161/JAHA.115.002892
5	130. Hostler D, Everson-Stewart S, Rea TD, Stiell IG, Callaway CW, Kudenchuk PJ, Sears
6	GK, Emerson SS, Nichol G. Effect of real-time feedback during cardiopulmonary resuscitation
7	outside hospital: prospective, cluster-randomised trial. Bmj. 2011;342:d512-d512. doi:
8	10.1136/bmj.d512
9	131. Hubner P, Lobmeyr E, Wallmüller C, Poppe M, Datler P, Keferböck M, Zeiner S,
10	Nürnberger A, Zajicek A, Laggner A, et al. Improvements in the quality of advanced life support
11	and patient outcome after implementation of a standardized real-life post-resuscitation feedback
12	system. Resuscitation. 2017;120:38-44. doi: 10.1016/j.resuscitation.2017.08.235
13	132. Hunt EA, Jeffers J, McNamara L, Newton H, Ford K, Bernier M, Tucker EW, Jones K,
14	O'Brien C, Dodge P, et al. Improved cardiopulmonary resuscitation performance with CODE
15	ACES2: A resuscitation quality bundle. Journal of the American Heart Association. 2018;7 doi:
16	10.1161/JAHA.118.009860
17	133. Hwang WS, Park JS, Kim SJ, Hong YS, Moon SW, Lee SW. A system-wide approach
18	from the community to the hospital for improving neurologic outcomes in out-of-hospital cardiac
19	arrest patients. Eur J Emerg Med. 2017;24:87-95. doi: 10.1097/mej.000000000000313
20	134. Kim YT, Shin SD, Hong SO, Ahn KO, Ro YS, Song KJ, Hong KJ. Effect of national
21	implementation of utstein recommendation from the global resuscitation alliance on ten steps to
22	improve outcomes from Out-of-Hospital cardiac arrest: A ten-year observational study in Korea.
23	BMJ Open. 2017;7 doi: 10.1136/bmjopen-2017-016925

1	135.	Knight LJ, Gabhart	JM. Earnest KS.	Leong KM. An	nglemver A.	Franzon D. Im	proving

- 2 code team performance and survival outcomes: implementation of pediatric resuscitation team
- 3 training. Crit Care Med. 2014;42:243-251. doi: 10.1097/CCM.0b013e3182a6439d
- 4 136. Lyon RM, Clarke S, Milligan D, Clegg GR. Resuscitation feedback and targeted
- 5 education improves quality of pre-hospital resuscitation in Scotland. Resuscitation. 2012;83:70-
- 6 75. doi: 10.1016/j.resuscitation.2011.07.016
- 7 137. Nehme Z, Bernard S, Cameron P, Bray JE, Meredith IT, Lijovic M, Smith K. Using a
- 8 Cardiac Arrest Registry to Measure the Quality of Emergency Medical Service Care.
- 9 *Circulation: Cardiovascular Quality and Outcomes.* 2015;8:56-66. doi:
- 10 10.1161/circoutcomes.114.001185
- 11 138. Olasveengen TM, Tomlinson A-E, Wik L, Sunde K, Steen PA, Myklebust H, Kramer-
- 12 Johansen J. A Failed Attempt to Improve Quality of Out-of-Hospital CPR Through Performance
- 13 Evaluation. Prehospital Emergency Care. 2009;11:427-433. doi: 10.1080/10903120701536628
- 14 139. Park JH, Shin SD, Ro YS, Song KJ, Hong KJ, Kim TH, Lee EJ, Kong SY.
- 15 Implementation of a bundle of Utstein cardiopulmonary resuscitation programs to improve
- 16 survival outcomes after out-of-hospital cardiac arrest in a metropolis: A before and after study.
- 17 Resuscitation. 2018;130:124-132. doi: 10.1016/j.resuscitation.2018.07.019
- 18 140. Pearson DA, Darrell Nelson R, Monk L, Tyson C, Jollis JG, Granger CB, Corbett C,
- 19 Garvey L, Runyon MS. Comparison of team-focused CPR vs standard CPR in resuscitation from
- 20 out-of-hospital cardiac arrest: Results from a statewide quality improvement initiative.
- 21 Resuscitation. 2016;105:165-172. doi: 10.1016/j.resuscitation.2016.04.008
- 22 141. Spitzer CR, Evans K, Buehler J, Ali NA, Besecker BY. Code blue pit crew model: A
- 23 novel approach to in-hospital cardiac arrest resuscitation. *Resuscitation*. 2019;143:158-164. doi:
- 24 10.1016/j.resuscitation.2019.06.290

1	142.	Sporer K,	Jacobs M,	Derevin L	, Duval S,	Pointer J.	Continuous	Qualit	y Im	provement
---	------	-----------	-----------	-----------	------------	------------	------------	--------	------	-----------

2 Efforts Increase Survival with Favorable Neurologic Outcome after Out-of-hospital Cardiac

3 Arrest. Prehosp Emerg Care. 2017;21:1-6. doi: 10.1080/10903127.2016.1218980

- 4 143. Stub D, Schmicker RH, Anderson ML, Callaway CW, Daya MR, Sayre MR, Elmer J,
- 5 Grunau BE, Aufderheide TP, Lin S, et al. Association between hospital post-resuscitative
- 6 performance and clinical outcomes after out-of-hospital cardiac arrest. *Resuscitation*.
- 7 2015;92:45-52. doi: 10.1016/j.resuscitation.2015.04.015
- 8 144. van Diepen S, Girotra S, Abella BS, Becker LB, Bobrow BJ, Chan PS, Fahrenbruch C,
- 9 Granger CB, Jollis JG, McNally B, et al. Multistate 5-Year Initiative to Improve Care for Out-of-
- 10 Hospital Cardiac Arrest: Primary Results From the HeartRescue Project. J Am Heart Assoc.
- 11 2017;6 doi: 10.1161/JAHA.117.005716
- 12 145. Weston BW, Jasti J, Lerner EB, Szabo A, Aufderheide TP, Colella MR. Does an
- 13 individualized feedback mechanism improve quality of out-of-hospital CPR? *Resuscitation*.
- 14 2017;113:96-100. doi: 10.1016/j.resuscitation.2017.02.004
- 15 146. Ko YC, Hsieh MJ, Ma MH, Bigham B, Bhanji F, Greif R. The effect of system
- 16 performance improvement on patients with cardiac arrest: A systematic review. *Resuscitation*.
- 17 2020;157:156-165. doi: 10.1016/j.resuscitation.2020.10.024
- 18 147. Barnard EBG, Sandbach DD, Nicholls TL, Wilson AW, Ercole A. Prehospital
- 19 determinants of successful resuscitation after traumatic and non-traumatic out-of-hospital cardiac
- 20 arrest. Emergency Medicine Journal. 2019;36:333. doi: 10.1136/emermed-2018-208165
- 21 148. Bjornsson HM, Bjornsdottir GG, Olafsdottir H, Mogensen BA, Mogensen B,
- 22 Thorgeirsson G. Effect of replacing ambulance physicians with paramedics on outcome of
- 23 resuscitation for prehospital cardiac arrest. European Journal of Emergency Medicine. 2021;28

- 1 149. Dickinson ET, Schneider RM, Verdile VP. The impact of prehospital physicians on out-
- 2 of-hospital nonasystolic cardiac arrest. *Prehospital Emergency Care*. 1997;1:132-135. doi:
- 3 10.1080/10903129708958805
- 4 150. Goto Y, Funada A, Goto Y. Impact of prehospital physician-led cardiopulmonary
- 5 resuscitation on neurologically intact survival after out-of-hospital cardiac arrest: A nationwide
- 6 population-based observational study. *Resuscitation*. 2019;136:38-46. doi:
- 7 <u>https://doi.org/10.1016/j.resuscitation.2018.11.014</u>
- 8 151. Goto Y, Maeda T, Nakatsu-Goto Y. Neurological outcomes in patients transported to
- 9 hospital without a prehospital return of spontaneous circulation after cardiac arrest. *Critical*
- 10 *Care*. 2013;17:R274. doi: 10.1186/cc13121
- 11 152. Hatakeyama T, Kiguchi T, Sera T, Nachi S, Ochiai K, Kitamura T, Ogura S, Otomo Y,
- 12 Iwami T. Physician's presence in pre-hospital setting improves one-month favorable
- 13 neurological survival after out-of-hospital cardiac arrest: A propensity score matching analysis of
- 14 the JAAM-OHCA Registry. *Resuscitation*. 2021;167:38-46. doi:
- 15 <u>https://doi.org/10.1016/j.resuscitation.2021.08.010</u>
- 16 153. Nakajima S, Matsuyama T, Watanabe M, Komukai S, Kandori K, Okada A, Okada Y,
- 17 Kitamura T, Ohta B. Prehospital Physician Presence for Patients With out-of-Hospital Cardiac
- 18 Arrest Undergoing Extracorporeal Cardiopulmonary Resuscitation: A Multicenter,
- 19 Retrospective, Nationwide Observational Study in Japan (The JAAM-OHCA registry). Current
- 20 Problems in Cardiology. 2023;48:101600. doi: https://doi.org/10.1016/j.cpcardiol.2023.101600
- 21 154. Boulton AJ, Edwards R, Gadie A, Clayton D, Leech C, Smyth MA, Brown T, Yeung J.
- 22 Prehospital critical care beyond advanced life support for out-of-hospital cardiac arrest: A
- 23 systematic review. *Resuscitation Plus*. 2025;21:100803. doi:
- 24 https://doi.org/10.1016/j.resplu.2024.100803

1	155. Boulton AJ ER, Gadie A, Clayton D, Smyth MA, Brown T, Yeung J on behalf of the
2	International Liaison Committee on Resuscitation EIT Life Support Task Force. Prehospital
3	critical care for out-of-hospital cardiac arrest: EIT 6313 TFSR. 2024. Updated. Accessed 14
4	January. https://costr.ilcor.org/document/prehospital-critical-care-for-out-of-hospital-cardiac-
5	arrest-eit-tfsr
6	156. Bujak K, Nadolny K, Trzeciak P, Gałązkowski R, Ładny J, Gąsior M. Does the presence
7	of physician-staffed emergency medical services improve the prognosis in out-of-hospital
8	cardiac arrest? A propensity score matching analysis. Polish Heart Journal (Kardiologia
9	Polska). 2022;80:685-692. doi: { }
10	157. Obara T, Yumoto T, Nojima T, Hongo T, Tsukahara K, Matsumoto N, Yorifuji T, Nakao
11	A, Elmer J, Naito H. Association of Prehospital Physician Presence During Pediatric Out-of-
12	Hospital Cardiac Arrest With Neurologic Outcomes. Pediatric Critical Care Medicine. 2023;24
13	158. Olasveengen TM, Lund-Kordahl I, Steen PA, Sunde K. Out-of hospital advanced life
14	support with or without a physician: Effects on quality of CPR and outcome. Resuscitation.
15	2009;80:1248-1252. doi: https://doi.org/10.1016/j.resuscitation.2009.07.018
16	159. Pemberton K, Franklin RC, Bosley E, Watt K. Pre-hospital predictors of long-term
17	survival from out-of-hospital cardiac arrest. Australasian Emergency Care. 2023;26:184-192.
18	doi: https://doi.org/10.1016/j.auec.2022.10.006
19	160. Sato N, Matsuyama T, Akazawa K, Nakazawa K, Hirose Y. Benefits of adding a
20	physician-staffed ambulance to bystander-witnessed out-of-hospital cardiac arrest: a community-
21	based, observational study in Niigata, Japan. BMJ Open. 2019;9:e032967. doi:
22	10.1136/bmjopen-2019-032967
23	161. von Vopelius-Feldt J, Coulter A, Benger J. The impact of a pre-hospital critical care team
24	on survival from out-of-hospital cardiac arrest. Resuscitation. 2015;96:290-295. doi:

25 <u>https://doi.org/10.1016/j.resuscitation.2015.08.020</u>

Greif 110

1	162. von Vopelius-Feldt J, Morris RW, Benger J. The effect of prehospital critical care on
2	survival following out-of-hospital cardiac arrest: A prospective observational study.
3	Resuscitation. 2020;146:178-187. doi: https://doi.org/10.1016/j.resuscitation.2019.08.008
4	163. Yasunaga H, Horiguchi H, Tanabe S, Akahane M, Ogawa T, Koike S, Imamura T.
5	Collaborative effects of bystander-initiated cardiopulmonary resuscitation and prehospital
6	advanced cardiac life support by physicians on survival of out-of-hospital cardiac arrest: a
7	nationwide population-based observational study. Critical Care. 2010;14:R199. doi:
8	10.1186/cc9319
9	164. Cheng A, Brown LL, Duff JP, Davidson J, Overly F, Tofil NM, Peterson DT, White ML,
10	Bhanji F, Bank I, et al. Improving Cardiopulmonary Resuscitation With a CPR Feedback Device
11	and Refresher Simulations (CPR CARES Study): A Randomized Clinical Trial. JAMA
12	Pediatrics. 2015;169:137-144. doi: 10.1001/jamapediatrics.2014.2616
13	165. Cheng A, Duff JP, Kessler D, Tofil NM, Davidson J, Lin Y, Chatfield J, Brown LL, Hunt
14	EA. Optimizing CPR performance with CPR coaching for pediatric cardiac arrest: A randomized
15	simulation-based clinical trial. Resuscitation. 2018;132:33-40. doi:
16	10.1016/j.resuscitation.2018.08.021
17	166. Hunt EA, Jeffers J, McNamara L, Newton H, Ford K, Bernier M, Tucker EW, Jones K,
18	O'Brien C, Dodge P, et al. Improved Cardiopulmonary Resuscitation Performance With CODE
19	ACES(2): A Resuscitation Quality Bundle. J Am Heart Assoc. 2018;7:e009860. doi:
20	10.1161/jaha.118.009860
21	167. Lauridsen KG BE, Nabecker S, Lin Y, Donoghue A, Duff J, Cheng A on behalf of the
22	International Liaison Committee on Resuscitation Education, Implementation, and Teams Task
23	Force CPR Coaching during adult and pediatric cardiac arrest: EIT 6314 TF SR. 2024.
24	Updated. Accessed 14 January. https://costr.ilcor.org/document/cpr-coaching-during-adult-and-

25 pediatric-cardiac-arrest-eit-6314-tf-sr

- 1 168. Badke CM, Friedman ML, Harris ZL, McCarthy-Kowols M, Tran S. Impact of an
- 2 untrained CPR Coach in simulated pediatric cardiopulmonary arrest: A pilot study. Resuscitation
- 3 plus. 2020;4:100035-100035. doi: 10.1016/j.resplu.2020.100035
- 4 169. Buyck M, Shayan Y, Gravel J, Hunt EA, Cheng A, Levy A. CPR coaching during cardiac
- 5 arrest improves adherence to PALS guidelines: a prospective, simulation-based trial.
- 6 Resuscitation Plus. 2021;5:100058-100058. doi: https://doi.org/10.1016/j.resplu.2020.100058
- 7 170. Infinger AE, Vandeventer S, Studnek JR. Introduction of performance coaching during
- 8 cardiopulmonary resuscitation improves compression depth and time to defibrillation in out-of-
- 9 hospital cardiac arrest. *Resuscitation*. 2014;85:1752-1758. doi:
- 10 10.1016/j.resuscitation.2014.09.016
- 11 171. Jones KA, Jani KH, Jones GW, Nye ML, Duff JP, Cheng A, Lin Y, Davidson J, Chatfield
- 12 J, Tofil N, et al. Using natural language processing to compare task-specific verbal cues in
- 13 coached versus noncoached cardiac arrest teams during simulated pediatrics resuscitation. AEM

14 education and training. 2021;5:e10707-e10707. doi: 10.1002/aet2.10707

- 15 172. Kessler DO, Grabinski Z, Shepard LN, Jones SI, Lin Y, Duff J, Tofil NM, Cheng A.
- 16 Influence of Cardiopulmonary Resuscitation Coaching on Interruptions in Chest Compressions
- 17 During Simulated Pediatric Cardiac Arrest. *Pediatric Critical Care Medicine*. 2021;22:345-353.
- 18 doi: 10.1097/PCC.00000000002623
- 19 173. Tofil NM, Cheng A, Lin Y, Davidson J, Hunt EA, Chatfield J, MacKinnon L, Kessler D.
- 20 Effect of a Cardiopulmonary Resuscitation Coach on Workload During Pediatric
- 21 Cardiopulmonary Arrest: A Multicenter, Simulation-Based Study. Pediatric critical care
- 22 medicine : a journal of the Society of Critical Care Medicine and the World Federation of
- 23 Pediatric Intensive and Critical Care Societies. 2020;21:e274-e281. doi:
- 24 10.1097/PCC.00000000002275

- 1 174. Lauridsen KG, Krogh K, Müller SD, Schmidt AS, Nadkarni VM, Berg RA, Bach L, Dodt
- 2 KK, Maack TC, Møller DS, et al. Barriers and facilitators for in-hospital resuscitation: A
- 3 prospective clinical study. *Resuscitation*. 2021;164:70-78. doi:
- 4 10.1016/j.resuscitation.2021.05.007
- 5 175. Leary M, Schweickert W, Neefe S, Tsypenyuk B, Falk SA, Holena DN. Improving
- 6 Providers' Role Definitions to Decrease Overcrowding and Improve In-Hospital Cardiac Arrest
- 7 Response. American journal of critical care : an official publication, American Association of
- 8 Critical-Care Nurses. 2016;25:335-339. doi: 10.4037/ajcc2016195
- 9 176. Pallas JD, Smiles JP, Zhang M. Cardiac Arrest Nurse Leadership (CANLEAD) trial: a
- 10 simulation-based randomised controlled trial implementation of a new cardiac arrest role to
- 11 facilitate cognitive offload for medical team leaders. *Emergency medicine journal : EMJ*.
- 12 2021;38:572-578. doi: 10.1136/emermed-2019-209298
- 13 177. Pfeiffer S, Lauridsen KG, Wenger J, Hunt EA, Haskell S, Atkins DL, Duval-Arnould JM,
- 14 Knight LJ, Cheng A, Gilfoyle E, et al. Code Team Structure and Training in the Pediatric
- 15 Resuscitation Quality International Collaborative. *Pediatric Emergency Care*. 2021;37:E431-
- 16 E435. doi: 10.1097/PEC.00000000001748 LK -
- 17 https://soeg.kb.dk/discovery/openurl?institution=45KBDK_KGL&vid=45KBDK_KGL:KGL&?
- 18 sid=Elsevier&sid=EMBASE&issn=15351815&id=doi:10.1097%2FPEC.00000000001748&at
- $19 \quad \underline{itle=Code+Team+Structure+and+Training+in+the+Pediatric+Resuscitation+Quality+Internation}$
- 20 <u>al+Collaborative&stitle=Pediatr.+Emerg.+Care&title=Pediatric+Emergency+Care&volume=37</u>
- $21 \qquad \underline{\& issue=8\& spage=E431\& epage=E435\& aulast=Pfeiffer\& aufirst=Stephen\& auinit=S.\& aufull=Pfeiffer\& aufull=Pf$
- 22 <u>ffer+S.&coden=PECAE&isbn=&pages=E431-E435&date=202</u>
- 23 178. Greif R, Bhanji F, Bigham BL, Bray J, Breckwoldt J, Cheng A, Duff JP, Gilfoyle E,
- 24 Hsieh MJ, Iwami T, et al. Education, Implementation, and Teams: 2020 International Consensus
- 25 on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment

- 1 Recommendations. *Resuscitation*. 2020;156:A188-A239. doi:
- 2 10.1016/j.resuscitation.2020.09.014
- 3 179. Smyth MA, Gunson I, Coppola A, Johnson S, Greif R, Lauridsen KG, Taylor-Philips S,
- 4 Perkins GD. Termination of Resuscitation Rules and Survival Among Patients With Out-of-
- 5 Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis. JAMA network open.
- 6 2024;7:e2420040-e2420040. doi: 10.1001/jamanetworkopen.2024.20040
- 7 180. Lauridsen KG AK, Greif R on behalf of the International Liaison Committee on
- 8 Resuscitation Education, Implementation and Teams Task Force. Out-of-hospital cardiac arrest
- 9 termination of resuscitation (TOR) rules Systematic Review of diagnostic accuracy: EIT 6303
- 10 (EIT642) TF SR. 2025. Updated. Accessed 14 January. https://costr.ilcor.org/document/out-of-
- 11 <u>hospital-cardiac-arrest-termination-of-resuscitation-tor-rules-systematic-review-of-diagnostic-</u>
- 12 accuracy-eit-6303-eit642-tf-sr
- 13 181. Glober NK, Lardaro T, Christopher S, Tainter CR, Weinstein E, Kim D. Validation of the
- 14 NUE Rule to Predict Futile Resuscitation of Out-of-Hospital Cardiac Arrest. Prehospital
- 15 Emergency Care. 2021;25:706-711. doi: 10.1080/10903127.2020.1831666
- 16 182. Harris MI, Crowe RP, Anders J, D'Acunto S, Adelgais KM, Fishe J. Applying a set of
- 17 termination of resuscitation criteria to paediatric out-of-hospital cardiac arrest. *Resuscitation*.
- 18 2021;169:175-181. doi: 10.1016/j.resuscitation.2021.09.015
- 19 183. House M, Gray J, McMeekin P. Reducing the futile transportation of out-of-hospital
- 20 cardiac arrests: a retrospective validation. British paramedic journal. 2018;3:1-6. doi:
- 21 10.29045/14784726.2018.09.3.2.1
- 22 184. Hreinsson JP, Thorvaldsson AP, Magnusson V, Fridriksson BT, Libungan BG, Karason
- 23 S. Identifying out-of-hospital cardiac arrest patients with no chance of survival: An independent
- 24 validation of prediction rules. *Resuscitation*. 2020;146:19-25. doi:
- 25 10.1016/j.resuscitation.2019.11.001

1	185. Hsu S-H, Sun J-T, Huang EP-C, Nishiuchi T, Song KJ, Leong B, Rahman NHNA,
2	Khruekarnchana P, Naroo GY, Hsieh M-J, et al. The predictive performance of current
3	termination-of-resuscitation rules in patients following out-of-hospital cardiac arrest in Asian
4	countries: A cross-sectional multicentre study. PloS one. 2022;17:e0270986-e0270986. doi:
5	10.1371/journal.pone.0270986
6	186. Jabre P, Bougouin W, Dumas F, Carli P, Antoine C, Jacob L, Dahan B, Beganton F,
7	Empana J-P, Marijon E, et al. Early Identification of Patients With Out-of-Hospital Cardiac
8	Arrest With No Chance of Survival and Consideration for Organ Donation. Annals of internal
9	medicine. 2016;165:770-778. doi: 10.7326/M16-0402
10	187. Lin Y-Y, Lai Y-Y, Chang H-C, Lu C-H, Chiu P-W, Kuo Y-S, Huang S-P, Chang Y-H,
11	Lin C-H. Predictive performances of ALS and BLS termination of resuscitation rules in out-of-
12	hospital cardiac arrest for different resuscitation protocols. BMC emergency medicine.
13	2022;22:53-53. doi: 10.1186/s12873-022-00606-8
14	188. Matsui S, Kitamura T, Kurosawa H, Kiyohara K, Tanaka R, Sobue T, Nitta M.
15	Application of adult prehospital resuscitation rules to pediatric out of hospital cardiac arrest.
16	Resuscitation. 2023;184:109684-109684. doi: 10.1016/j.resuscitation.2022.109684
17	189. Park SY, Lim D, Ryu JH, Kim YH, Choi B, Kim SH. Modification of termination of
18	resuscitation rule with compression time interval in South Korea. Scientific reports.
19	2023;13:1403-1403. doi: 10.1038/s41598-023-28789-5
20	190. Smits RLA, Sødergren STF, van Schuppen H, Folke F, Ringh M, Jonsson M, Motazedi
21	E, van Valkengoed IGM, Tan HL. Termination of resuscitation in out-of-hospital cardiac arrest
22	in women and men: An ESCAPE-NET project. Resuscitation. 2023;185:109721-109721. doi:
23	10.1016/j.resuscitation.2023.109721
24	191. Khan KA, Petrou S, Smyth M, Perkins GD, Slowther A-M, Brown T, Madan JJ.
25	Comparative cost-effectiveness of termination of resuscitation rules for patients transported in

- 1 cardiac arrest. *Resuscitation*. 2024;201:110274-110274. doi:
- 2 10.1016/j.resuscitation.2024.110274

3 192. Nazeha N, Mao DR, Hong D, Shahidah N, Chua ISY, Ng YY, Leong BSH, Tiah L, Chia

4 MYC, Ng WM, et al. Cost-effectiveness analysis of a 'Termination of Resuscitation' protocol for

- 5 the management of out-of-hospital cardiac arrest. *Resuscitation*. 2024;202:110323-110323. doi:
- 6 10.1016/j.resuscitation.2024.110323
- 7 193. Shetty P, Ren Y, Dillon D, McLeod A, Nishijima D, Taylor SL. Derivation of a clinical

8 decision rule for termination of resuscitation in non-traumatic pediatric out-of-hospital cardiac

9 arrest. *Resuscitation*. 2024;204:110400-110400. doi: 10.1016/j.resuscitation.2024.110400

10 194. Bobrow BJ, Spaite DW, Berg RA, Stolz U, Sanders AB, Kern KB, Vadeboncoeur TF,

11 Clark LL, Gallagher JV, Stapczynski JS, et al. Chest compression-only CPR by lay rescuers and

12 survival from out-of-hospital cardiac arrest. Jama. 2010;304:1447-1454. doi:

- 13 10.1001/jama.2010.1392
- 14 195. Kitamura T, Kiyohara K, Sakai T, Matsuyama T, Hatakeyama T, Shimamoto T, Izawa J,
- 15 Fujii T, Nishiyama C, Kawamura T, et al. Public-Access Defibrillation and Out-of-Hospital
- 16 Cardiac Arrest in Japan. N Engl J Med. 2016;375:1649-1659. doi: 10.1056/NEJMsa1600011
- 17 196. Rea TD, Eisenberg MS, Culley LL, Becker L. Dispatcher-assisted cardiopulmonary

18 resuscitation and survival in cardiac arrest. *Circulation*. 2001;104:2513-2516. doi:

- 19 10.1161/hc4601.099468
- 20 197. Ringh M, Rosenqvist M, Hollenberg J, Jonsson M, Fredman D, Nordberg P, Järnbert-
- 21 Pettersson H, Hasselqvist-Ax I, Riva G, Svensson L. Mobile-phone dispatch of laypersons for
- 22 CPR in out-of-hospital cardiac arrest. *N Engl J Med*. 2015;372:2316-2325. doi:
- 23 10.1056/NEJMoa1406038
- 24 198. Matsuyama T SA, Zace D, Olaussen A, Lockey A, Greif R on behalf of the
- International Liaison Committee on Resuscitation Education, Implementation and Teams Task
 © 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

- 1 Force. Community Initiatives to promote BLS implementation: EIT 6306 TF ScR. 2024.
- 2 Updated. Accessed 14 January. https://costr.ilcor.org/document/community-initiatives-to-
- 3 promote-bls-implementation-eit-6306-tf-scr
- 4 199. Becker L, Vath J, Eisenberg M, Meischke H. The impact of television public service
- 5 announcements on the rate of bystander cpr. *Prehospital Emergency Care*. 1999;3:353-356. doi:
- 6 10.1080/10903129908958968
- 7 200. Bergamo C, Bui QM, Gonzales L, Hinchey P, Sasson C, Cabanas JG. TAKE10: A
- 8 community approach to teaching compression-only CPR to high-risk zip codes. *Resuscitation*.
- 9 2016;102:75-79. doi: <u>https://doi.org/10.1016/j.resuscitation.2016.02.019</u>
- 10 201. Boland LL, Formanek MB, Harkins KK, Frazee CL, Kamrud JW, Stevens AC, Lick CJ,
- 11 Yannopoulos D. Minnesota Heart Safe Communities: Are community-based initiatives
- 12 increasing pre-ambulance CPR and AED use? *Resuscitation*. 2017;119:33-36. doi:
- 13 <u>https://doi.org/10.1016/j.resuscitation.2017.07.031</u>
- 14 202. Cone DC, Burns K, Maciejewski K, Dziura J, McNally B, Vellano K. Sudden cardiac
- 15 arrest survival in HEARTSafe communities. *Resuscitation*. 2020;146:13-18. doi:
- 16 <u>https://doi.org/10.1016/j.resuscitation.2019.10.029</u>
- 17 203. Del Rios M, Han J, Cano A, Ramirez V, Morales G, Campbell TL, Hoek TV. Pay It
- 18 Forward: High School Video-based Instruction Can Disseminate CPR Knowledge in Priority
- 19 Neighborhoods. West J Emerg Med. 2018;19:423-429. doi: 10.5811/westjem.2017.10.35108
- 20 204. Eisenberg M, Damon S, Mandel L, Tewodros A, Meischke H, Beaupied E, Bennett J,
- 21 Guildner C, Ewell C, Gordon M. CPR Instruction by Videotape: Results of a Community
- 22 Project. Annals of Emergency Medicine. 1995;25:198-202. doi: https://doi.org/10.1016/S0196-
- 23 <u>0644(95)70324-1</u>
- 24 205. Fordyce CB, Hansen CM, Kragholm K, Dupre ME, Jollis JG, Roettig ML, Becker LB,
- 25 Hansen SM, Hinohara TT, Corbett CC, et al. Association of Public Health Initiatives With

- 1 Outcomes for Out-of-Hospital Cardiac Arrest at Home and in Public Locations. JAMA
- 2 Cardiology. 2017;2:1226-1235. doi: 10.1001/jamacardio.2017.3471
- 3 206. Isbye DL, Rasmussen LS, Ringsted C, Lippert FK. Disseminating Cardiopulmonary
- 4 Resuscitation Training by Distributing 35 000 Personal Manikins Among School Children.
- 5 Circulation. 2007;116:1380-1385. doi: doi:10.1161/CIRCULATIONAHA.107.710616
- 6 207. Kim JY, Cho H, Park J-H, Song J-H, Moon S, Lee H, Yang HJ, Tolles J, Bosson N,
- 7 Lewis RJ. Application of the "Plan-Do-Study-Act" Model to Improve Survival after Cardiac
- 8 Arrest in Korea: A Case Study. *Prehospital and Disaster Medicine*. 2020;35:46-54. doi:
- 9 10.1017/S1049023X19005156
- 10 208. Li S, Qin C, Zhang H, Maimaitiming M, Shi J, Feng Y, Huang K, Bi Y, Wang M, Zhou
- 11 Q, et al. Survival After Out-of-Hospital Cardiac Arrest Before and After Legislation for
- 12 Bystander CPR. JAMA Network Open. 2024;7:e247909-e247909. doi:
- 13 10.1001/jamanetworkopen.2024.7909
- 14 209. Lockey AS, Brown TP, Carlyon JD, Hawkes CA. Impact of community initiatives on
- 15 non-EMS bystander CPR rates in West Yorkshire between 2014 and 2018. *Resuscitation Plus*.
- 16 2021;6:100115. doi: https://doi.org/10.1016/j.resplu.2021.100115
- 17 210. Malta Hansen C, Kragholm K, Pearson D, Tyson C, Monk L, Myers B, Nelson D, Dupre
- 18 M, Fosbøl E, Jollis J, et al. Association of Bystander and First-Responder Intervention With
- 19 Survival After Out-of-Hospital Cardiac Arrest in North Carolina, 2010-2013. JAMA.
- 20 2015;314:255-264. doi: 10.1001/jama.2015.7938
- 21 211. Møller Nielsen A, Lou Isbye D, Knudsen Lippert F, Rasmussen LS. Engaging a whole
- 22 community in resuscitation. *Resuscitation*. 2012;83:1067-1071. doi:
- 23 10.1016/j.resuscitation.2012.04.012

- 1 212. Møller Nielsen A, Isbye DL, Lippert FK, Rasmussen LS. Persisting effect of community
- 2 approaches to resuscitation. *Resuscitation*. 2014;85:1450-1454. doi:
- 3 <u>https://doi.org/10.1016/j.resuscitation.2014.08.019</u>
- 4 213. Nishiyama C, Kitamura T, Sakai T, Murakami Y, Shimamoto T, Kawamura T,
- 5 Yonezawa T, Nakai S, Marukawa S, Sakamoto T, et al. Community-Wide Dissemination of
- 6 Bystander Cardiopulmonary Resuscitation and Automated External Defibrillator Use Using a 45-
- 7 Minute Chest Compression–Only Cardiopulmonary Resuscitation Training. Journal of the
- 8 American Heart Association. 2019;8:e009436. doi: doi:10.1161/JAHA.118.009436
- 9 214. Ro YS, Shin SD, Song KJ, Hong SO, Kim YT, Lee D-W, Cho S-I. Public awareness and
- 10 self-efficacy of cardiopulmonary resuscitation in communities and outcomes of out-of-hospital
- 11 cardiac arrest: A multi-level analysis. *Resuscitation*. 2016;102:17-24. doi:
- 12 https://doi.org/10.1016/j.resuscitation.2016.02.004
- 13 215. Ro YS, Song KJ, Shin SD, Hong KJ, Park JH, Kong SY, Cho S-I. Association between
- 14 county-level cardiopulmonary resuscitation training and changes in Survival Outcomes after out-
- 15 of-hospital cardiac arrest over 5 years: A multilevel analysis. *Resuscitation*. 2019;139:291-298.
- 16 doi: <u>https://doi.org/10.1016/j.resuscitation.2019.01.012</u>
- 17 216. Tay PJM, Pek PP, Fan Q, Ng YY, Leong BS, Gan HN, Mao DR, Chia MYC, Cheah SO,
- 18 Doctor N, et al. Effectiveness of a community based out-of-hospital cardiac arrest (OHCA)
- 19 interventional bundle: Results of a pilot study. *Resuscitation*. 2020;146:220-228. doi:
- 20 10.1016/j.resuscitation.2019.10.015
- 21 217. Uber A, Sadler RC, Chassee T, Reynolds JC. Does Non-Targeted Community CPR
- 22 Training Increase Bystander CPR Frequency? *Prehospital Emergency Care*. 2018;22:753-761.
- 23 doi: 10.1080/10903127.2018.1459978
- 24 218. Wissenberg M, Lippert FK, Folke F, Weeke P, Hansen CM, Christensen EF, Jans H,
- Hansen PA, Lang-Jensen T, Olesen JB, et al. Association of National Initiatives to Improve
 © 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

Greif 119

1	Cardiac Arrest Management With Rates of Bystander Intervention and Patient Survival After
2	Out-of-Hospital Cardiac Arrest. JAMA. 2013;310:1377-1384. doi: 10.1001/jama.2013.278483
3	219. Scapigliati A, Zace D, Matsuyama T, Pisapia L, Saviani M, Semeraro F, Ristagno G,
4	Laurenti P, Bray JE, Greif R, et al. Community Initiatives to Promote Basic Life Support
5	Implementation-A Scoping Review. J Clin Med. 2021;10 doi: 10.3390/jcm10245719
6	220. Considine J, Eastwood K, Webster H, Smyth M, Nation K, Greif R, Dainty K, Finn J,
7	Bray J. Family presence during adult resuscitation from cardiac arrest: A systematic review.
8	Resuscitation. 2022;180:11-23. doi: 10.1016/j.resuscitation.2022.08.021
9	221. Rahmawati I, Dilaruri A, Rosmalinda, Palupi LM, Widiani E. Factors associated with
10	nurses' perceptions and self-confidence in relation to family presence during resuscitation: a
11	cross-sectional study in Indonesia. Kontakt. 2021;23:256-262. doi: 10.32725/kont.2021.050
12	222. Saifan AR, Elshatarat RA, Saleh ZT, Elhefnawy KA, Elneblawi NH, Al-Sayaghi KM,
13	Masa'Deh R, Al-Yateem N, Abdel-Aziz HR, Saleh AM. Health professionals and family
14	members during cardiopulmonary resuscitation: A qualitative study on the experience of
15	witnessing resuscitation in Jordanian critical care units. Heart & Lung: The Journal of
16	Cardiopulmonary and Acute Care. 2023;62:101-107. doi: 10.1016/j.hrtlng.2023.06.020
17	223. Waldemar A, Strömberg A, Thylén I, Bremer A. Experiences of family-witnessed
18	cardiopulmonary resuscitation in hospital and its impact on life: An interview study with cardiac
19	arrest survivors and their family members. J Clin Nurs. 2023;32:7412-7424. doi:
20	10.1111/jocn.16788
21	224. Choi YR, Yi Y. Emergency nurses' perceptions of family presence during resuscitation:
22	A thematic analysis. J Korean Acad Fundam Nurs. 2023;30:519-529. doi:
23	10.7739/jkafn.2023.30.4.519
24	225. Powers K, Duncan JM, Renee Twibell K. Family support person role during
25	resuscitation: A qualitative exploration LClin Nurs 2023:32:409-421 doi: 10.1111/jocn.16248

resuscitation: A qualitative exploration. *J Clin Nurs*. 2023;32:409-421. doi: 10.1111/jocn.16248
 © 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

1	226. Risson H, Beovich B, Bowles KA. Paramedic interactions with significant others during
2	and after resuscitation and death of a patient. Australas Emerg Care. 2023;26:113-118. doi:
3	10.1016/j.auec.2022.08.007
4	227. Waldemar A, Bremer A, Strömberg A, Thylen I. Family presence during in-hospital
5	cardiopulmonary resuscitation: effects of an educational online intervention on self-confidence
6	and attitudes of healthcare professionals. Eur J Cardiovasc Nurs. 2024;23:486-496. doi:
7	10.1093/eurjcn/zvad111
8	228. Rubin MA, Svensson TL, Herling SF, Jabre P, Møller AM. Family presence during
9	resuscitation. Cochrane Database Syst Rev. 2023;5:CD013619. doi:
10	10.1002/14651858.CD013619.pub2
11	229. Rubin MA, Meulengracht SES, Frederiksen KAP, Thomsen T, Møller AM. The
12	healthcare professionals' perspectives and experiences with family presence during resuscitation:
13	A qualitative evidence synthesis. Acta Anaesthesiol Scand. 2024;68:101-121. doi:
14	10.1111/aas.14323
15	230. Boulton AJ, Abelairas-Gómez C, Olaussen A, Skrifvars MB, Greif R, Yeung J. Cardiac
16	arrest centres for patients with non-traumatic cardiac arrest: A systematic review. Resuscitation.
17	2024;203:110387. doi: 10.1016/j.resuscitation.2024.110387
18	231. Greif R, Bray JE, Djärv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ,
19	Scholefield BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary
20	Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:
21	Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support;
22	Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces.
23	Circulation. 2024;150:e580-e687. doi: 10.1161/cir.000000000001288
24	232. Greif R, Bray JE, Djärv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ,

25 Scholefield BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary

1	Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:
2	Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support;
3	Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces.
4	Resuscitation. 2024;205:110414. doi: 10.1016/j.resuscitation.2024.110414
5	233. Dicker B, Garrett N, Howie G, Brett A, Scott T, Stewart R, Perkins GD, Smith T, Garcia
6	E, Todd VF. Association between direct transport to a cardiac arrest centre and survival
7	following out-of-hospital cardiac arrest: A propensity-matched Aotearoa New Zealand study.
8	Resusc Plus. 2024;18:100625. doi: 10.1016/j.resplu.2024.100625
9	234. Price J, Rees P, Lachowycz K, Starr Z, Pareek N, Keeble TR, Major R, Barnard EBG.
10	Increased survival for resuscitated Utstein-comparator group patients conveyed directly to
11	cardiac arrest centres in a large rural and suburban population in England. Resuscitation.
12	2024;201:110280. doi: 10.1016/j.resuscitation.2024.110280
13	235. Voß F, Thevathasan T, Scholz KH, Böttiger BW, Scheiber D, Kabiri P, Bernhard M,
14	Kienbaum P, Jung C, Westenfeld R, et al. Accredited cardiac arrest centers facilitate eCPR and
15	improve neurological outcome. Resuscitation. 2024;194:110069. doi:
16	10.1016/j.resuscitation.2023.110069
17	236. Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D,
18	Bhanji F, Andersen LW, Avis SR, et al. 2021 International Consensus on Cardiopulmonary
19	Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:
20	Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support;
21	Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working
22	Group. Resuscitation. 2021;169:229-311. doi: 10.1016/j.resuscitation.2021.10.040
23	237. Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D,
24	Bhanji F, Andersen LW, Avis SR, et al. 2021 International Consensus on Cardiopulmonary
25	Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations:

1	Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support;
2	Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working
3	Group. Circulation. 2022;145:e645-e721. doi: 10.1161/cir.0000000000001017
4	238. Andelius L, Malta Hansen C, Jonsson M, Gerds TA, Rajan S, Torp-Pedersen C, Claesson
5	A, Lippert F, Tofte Gregers MC, Berglund E, et al. Smartphone-activated volunteer responders
6	and bystander defibrillation for out-of-hospital cardiac arrest in private homes and public
7	locations. Eur Heart J Acute Cardiovasc Care. 2023;12:87-95. doi: 10.1093/ehjacc/zuac165
8	239. Gregers M, Andelius L, Kjoelbye JS, Grabmayr AJ, Jakobsen LK, Christensen NB.
9	Association Between Number of Volunteer Responders and Interventions Before Ambulance
10	Arrival for Cardiac Arrest. J Am Coll Cardiol. 2023;81:668-680.
11	240. Jonsson M, Berglund E, Baldi E, Caputo ML, Auricchio A, Blom MT. Dispatch of
12	Volunteer Responders to Out-of-Hospital Cardiac Arrests. J Am Coll Cardiol. 2023;82:200-210.
13	241. Siddiqui FJ, Fook-Chong S, Shahidah N, Tan CK, Poh JY, Ng WM. Technology
14	activated community first responders in Singapore: Real-world care delivery & outcome trends.
15	Resusc Plus. 2023;16
16	242. Matsuyama T, Scapigliati A, Pellis T, Greif R, Iwami T. Willingness to perform
17	bystander cardiopulmonary resuscitation: A scoping review. Resusc Plus. 2020;4:100043. doi:
18	10.1016/j.resplu.2020.100043
19	243. Lauridsen KG, Djärv T, Breckwoldt J, Tjissen JA, Couper K, Greif R. Pre-arrest
20	prediction of survival following in-hospital cardiac arrest: A systematic review of diagnostic test
21	accuracy studies. Resuscitation. 2022;179:141-151. doi: 10.1016/j.resuscitation.2022.07.041
22	244. Alao DO, Hukan Y, Mohammed N, Moin K, Sudha RK, Cevik AA, Abu-Zidan FM.
23	Validating the GO-FAR score: predicting in-hospital cardiac arrest outcomes in the Middle East.
24	Int J Emerg Med. 2024;17:161. doi: 10.1186/s12245-024-00749-4

1	245. Chen L, Justice SA, Bader AM, Allen MB. Accuracy of frailty instruments in predicting
2	outcomes following perioperative cardiac arrest. Resuscitation. 2024;200:110244. doi:
3	10.1016/j.resuscitation.2024.110244
4	246. Kim B, Hong S-I, Kim Y-J, Cho YJ, Kim WY. Predicting the probability of good
5	neurological outcome after in-hospital cardiac arrest based on prearrest factors: validation of the
6	good outcome following attempted resuscitation 2 (GO-FAR 2) score. Intern Emerg Med.
7	2023;18:1807-1813. doi: 10.1007/s11739-023-03271-2
8	247. Ren Y, Ye L, Huang X, Gao X, Yin G, Wu X, Huang W, Cao L, Xu P. Validation the
9	clinical value of good outcome following attempted resuscitation scores in Chinese populations
10	in predicting the prognosis of in-hospital cardiac arrest. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue.
11	2022;34:1238-1242. doi: 10.3760/cma.j.cn121430-20220317-00256
12	248. Lauridsen KG, Baldi E, Smyth M, Perkins GD, Greif R. Clinical decision rules for
13	termination of resuscitation during in-hospital cardiac arrest: A systematic review of diagnostic
14	test accuracy studies. Resuscitation. 2021;158:23-29. doi: 10.1016/j.resuscitation.2020.10.036
15	249. Schnaubelt S, Monsieurs KG, Fijacko N, Veigl C, Al-Hilali Z, Atiq H, Bigham BL,
16	Eastwood K, Ko YC, Matsuyama T, et al. International facets of the 'chain of survival' for out-
17	of-hospital and in-hospital cardiac arrest - A scoping review. Resusc Plus. 2024;19:100689. doi:
18	10.1016/j.resplu.2024.100689
19	250. Cummins RO, Ornato JP, Thies WH, Pepe PE. Improving survival from sudden cardiac
20	arrest: the "chain of survival" concept. A statement for health professionals from the Advanced
21	Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American
22	Heart Association. Circulation. 1991;83:1832-1847. doi: 10.1161/01.cir.83.5.1832
23	251. Ceferino L, Merino Y, Pizarro S, Moya L, Ozturk B. Placing engineering in the
24	earthquake response and the survival chain. Nat Commun. 2024;15:4298. doi: 10.1038/s41467-
25	024-48624-3

1	252. Dünser MW, Noitz M, Tschoellitsch T, Bruckner M, Brunner M, Eichler B, Erblich R,
2	Kalb S, Knöll M, Szasz J, et al. Emergency critical care: closing the gap between onset of critical
3	illness and intensive care unit admission. Wien Klin Wochenschr. 2024;136:651-661. doi:
4	10.1007/s00508-024-02374-w
5	253. Jouffroy R, Djossou F, Neviere R, Jaber S, Vivien B, Heming N, Gueye P. The chain of
6	survival and rehabilitation for sepsis: concepts and proposals for healthcare trajectory
7	optimization. Ann Intensive Care. 2024;14:58. doi: 10.1186/s13613-024-01282-6
8	254. Lam TJR, Liu Z, Tan BY-Q, Ng YY, Tan CK, Wong XY, Venketasubramanian N, Yeo
9	LLL, Ho AFW, Ong MEH. Prehospital stroke care in Singapore. Singapore Med J. 2024; doi:
10	10.4103/singaporemedj.smj-2023-066
11	255. Latif RK, Clifford SP, Baker JA, Lenhardt R, Haq MZ, Huang J, Farah I, Businger JR.
12	Traumatic hemorrhage and chain of survival. Scand J Trauma Resusc Emerg Med. 2023;31 doi:
13	10.1186/s13049-023-01088-8
14	256. Nadarajan GD, Ong MEH. The frame of survival for cardiopulmonary resuscitation in
15	lower-resource settings. Lancet Glob Health. 2024;12:e378-e379. doi: 10.1016/s2214-
16	109x(24)00005-6
17	257. Yilmaz S, Umac GA. Can the Chain of Survival start with environment safety for special
18	circumstances? Resusc Plus. 2024;19:100717. doi: 10.1016/j.resplu.2024.100717
19	258. Schnaubelt S MK, Fijacko N, Veigl C, Al-Hilali Z, Atiq H, Bigham BL, Eastwood K, Ko
20	YC, Matsuyama T, Athieno Odakha J, Olaussen A, Greif R; on behalf of the International
21	Liaison Committee on Resuscitation Education, Implementation and Teams Task Force (EIT)
22	Life Support Task Force. EIT 6311 - International facets of the 'Chain of Survival': EIT 6311;
23	TF ScR. 2023. Updated. Accessed 14 January. https://costr.ilcor.org/document/eit-6311-
24	international-facets-of-the-chain-of-survival-eit-6311-tf-scr

1	259. Lin Y LA, Grief R, Donoghue A, Matsuyama T, Farquharson B, Cortegiani A, Banerjee
2	A, Cheng A on behalf of the International Liaison Committee on Resuscitation Education,
3	Implementation and Teams Task Force (EIT). CPR feedback device used in resuscitation
4	training: EIT 6404 TF SR. 2024. Updated. Accessed 14 January.
5	https://costr.ilcor.org/document/cpr-feedback-device-used-in-resuscitation-training-eit-6404-tf-sr
6	260. Cortegiani A, Russotto V, Montalto F, Iozzo P, Meschis R, Pugliesi M, Mariano D,
7	Benenati V, Raineri SM, Gregoretti C, et al. Use of a Real-Time Training Software (Laerdal
8	QCPR(R)) Compared to Instructor-Based Feedback for High-Quality Chest Compressions
9	Acquisition in Secondary School Students: A Randomized Trial. PLoS One. 2017;12:e0169591.
10	doi: 10.1371/journal.pone.0169591
11	261. Kong SYJ, Song KJ, Shin SD, Ro YS, Myklebust H, Birkenes TS, Kim TH, Park KJ.
12	Effect of real-time feedback during cardiopulmonary resuscitation training on quality of
13	performances: A prospective cluster-randomized trial. Hong Kong Journal of Emergency
14	Medicine. 2020;27:187-196. doi: 10.1177/1024907918825016
15	262. Meng XY, You J, Dai LL, Yin XD, Xu JA, Wang JF. Efficacy of a Simplified Feedback
16	Trainer for High-Quality Chest Compression Training: A Randomized Controlled Simulation
17	Study. Front Public Health. 2021;9:675487. doi: 10.3389/fpubh.2021.675487
18	263. Allan KS, Wong N, Aves T, Dorian P. The benefits of a simplified method for CPR
19	training of medical professionals: a randomized controlled study. Resuscitation. 2013;84:1119-
20	1124. doi: 10.1016/j.resuscitation.2013.03.005
21	264. Ghaderi MS, Malekzadeh J, Mazloum S, Pourghaznein T. Comparison of real-time
22	feedback and debriefing by video recording on basic life support skill in nursing students. BMC
23	Med Educ. 2023;23:62. doi: 10.1186/s12909-022-03951-1
24	265. Gonzalez-Santano D, Fernandez-Garcia D, Silvestre-Medina E, Remuinan-Rodriguez B,
25	Rosell-Ortiz F, Gomez-Salgado J, Sobrido-Prieto M, Ordas-Campos B, Martinez-Isasi S.

1	Evaluation of Three Methods for CPR Training to Lifeguards: A Randomised Trial Using
2	Traditional Procedures and New Technologies. Medicina (Kaunas). 2020;56 doi:
3	10.3390/medicina56110577
4	266. Jang TC, Ryoo HW, Moon S, Ahn JY, Lee DE, Lee WK, Kwak SG, Kim JH. Long-term
5	benefits of chest compression-only cardiopulmonary resuscitation training using real-time visual
6	feedback manikins: a randomized simulation study. Clin Exp Emerg Med. 2020;7:206-212. doi:
7	10.15441/ceem.20.022
8	267. Jiang J, Yan J, Yao D, Xiao J, Chen R, Zhao Y, Jin X. Comparison of the effects of using
9	feedback devices for training or simulated cardiopulmonary arrest. J Cardiothorac Surg.
10	2024;19:159. doi: 10.1186/s13019-024-02669-z
11	268. Kardong-Edgren SE, Oermann MH, Odom-Maryon T, Ha Y. Comparison of two
12	instructional modalities for nursing student CPR skill acquisition. Resuscitation. 2010;81:1019-
13	1024. doi: 10.1016/j.resuscitation.2010.04.022
14	269. Katipoglu B, Madziala MA, Evrin T, Gawlowski P, Szarpak A, Dabrowska A, Bialka S,
15	Ladny JR, Szarpak L, Konert A, et al. How should we teach cardiopulmonary resuscitation?
16	Randomized multi-center study. Cardiol J. 2021;28:439-445. doi: 10.5603/CJ.a2019.0092
17	270. Labuschagne MJ, Arbee A, de Klerk C, de Vries E, de Waal T, Jhetam T, Piest B, Prins J,
18	Uys S, van Wyk R, et al. A comparison of the effectiveness of QCPR and conventional CPR
19	training in final-year medical students at a South African university. Afr J Emerg Med.
20	2022;12:106-111. doi: 10.1016/j.afjem.2022.02.001
21	271. Lee PH, Lai HY, Hsieh TC, Wu WR. Using real-time device-based visual feedback in
22	CPR recertification programs: A prospective randomised controlled study. Nurse Educ Today.
23	2023;124:105755. doi: 10.1016/j.nedt.2023.105755

1	272. Lin Y, Cheng A, Grant VJ, Currie GR, Hecker KG. Improving CPR quality with
2	distributed practice and real-time feedback in pediatric healthcare providers - A randomized
3	controlled trial. Resuscitation. 2018;130:6-12. doi: 10.1016/j.resuscitation.2018.06.025
4	273. Min MK, Yeom SR, Ryu JH, Kim YI, Park MR, Han SK, Lee SH, Park SW, Park SC.
5	Comparison between an instructor-led course and training using a voice advisory manikin in
6	initial cardiopulmonary resuscitation skill acquisition. Clin Exp Emerg Med. 2016;3:158-164.
7	doi: 10.15441/ceem.15.114
8	274. Pavo N, Goliasch G, Nierscher FJ, Stumpf D, Haugk M, Breckwoldt J, Ruetzler K, Greif
9	R, Fischer H. Short structured feedback training is equivalent to a mechanical feedback device in
10	two-rescuer BLS: a randomised simulation study. Scand J Trauma Resusc Emerg Med.
11	2016;24:70. doi: 10.1186/s13049-016-0265-9
12	275. Spooner BB, Fallaha JF, Kocierz L, Smith CM, Smith SC, Perkins GD. An evaluation of
13	objective feedback in basic life support (BLS) training. Resuscitation. 2007;73:417-424. doi:
14	10.1016/j.resuscitation.2006.10.017
15	276. Suet G, Blanie A, de Montblanc J, Roulleau P, Benhamou D. External Cardiac Massage
16	Training of Medical Students: A Randomized Comparison of Two Feedback Methods to
17	Standard Training. J Emerg Med. 2020;59:270-277. doi: 10.1016/j.jemermed.2020.04.058
18	277. Sutton RM, Niles D, Meaney PA, Aplenc R, French B, Abella BS, Lengetti EL, Berg
19	RA, Helfaer MA, Nadkarni V. "Booster" training: evaluation of instructor-led bedside
20	cardiopulmonary resuscitation skill training and automated corrective feedback to improve
21	cardiopulmonary resuscitation compliance of Pediatric Basic Life Support providers during
22	simulated cardiac arrest. Pediatr Crit Care Med. 2011;12:e116-121. doi:
23	10.1097/PCC.0b013e3181e91271

1	278. Wagner M, Bibl K, Hrdliczka E, Steinbauer P, Stiller M, Gropel P, Goeral K, Salzer-
2	Muhar U, Berger A, Schmolzer GM, et al. Effects of Feedback on Chest Compression Quality: A
3	Randomized Simulation Study. Pediatrics. 2019;143 doi: 10.1542/peds.2018-2441
4	279. Zhou XL, Wang J, Jin XQ, Zhao Y, Liu RL, Jiang C. Quality retention of chest
5	compression after repetitive practices with or without feedback devices: A randomized manikin
6	study. Am J Emerg Med. 2020;38:73-78. doi: 10.1016/j.ajem.2019.04.025
7	280. Jones A, Lin Y, Nettel-Aguirre A, Gilfoyle E, Cheng A. Visual assessment of CPR
8	quality during pediatric cardiac arrest: does point of view matter? Resuscitation. 2015;90:50-55.
9	doi: 10.1016/j.resuscitation.2015.01.036
10	281. Luque-López L, Molina-Mula J. Basic life support training for the adult lay population. A
11	systematic review. Signa Vitae. 2021;17:47-61. doi: 10.22514/sv.2021.026
12	282. Eastwood K NS, Breckwoldt J, Lockey A, Greif R, on behalf of the International Liaison
13	Commitee on Resuscitation Education, Implementation and Teams Task Force. Self-directed
14	digital-based versus instructor-led cardiopulmonary resuscitation education and training in adults
15	and children: EIT 6406 TF SR. 2024. Updated. Accessed 14 December.
16	https://costr.ilcor.org/document/self-directed-digital-based-versus-instructor-led-
17	cardiopulmonary-resuscitation-education-and-training-in-adults-and-children-eit-6406-tf-sr
18	283. Ali S, Athar M, Ahmed SM. A randomised controlled comparison of video versus
19	instructor-based compression only life support training. Indian Journal of Anaesthesia.
20	2019;63:188-193.
21	284. Assadi T, Mofidi M, Rezai M, Hafezimoghadam P, Maghsoudi M, Mosaddegh R,
22	Aghdam H. The comparison between two methods of basic life support instruction: video self-
23	instruction versus traditional method. Hong kong journal of emergency medicine. 2015;22:291-
24	296.

1	285.	Beskind DL, Stolz U, Thiede R, Hoyer R, Burns W, Brown J, Ludgate M, Tiutan T,
2	Shane	R, McMorrow D, et al. Viewing a brief chest-compression-only CPR video improves
3	bystar	nder CPR performance and responsiveness in high school students: A cluster randomized
4	trial. I	Resuscitation. 2016;104:28-33.
5	286.	Chung CH, Siu AY, Po LL, Lam CY, Wong PC. Comparing the effectiveness of video
6	self-in	struction versus traditional classroom instruction targeted at cardiopulmonary resuscitation
7	skills	for laypersons: a prospective randomised controlled trial. Hong Kong Medical Journal.
8	2010;	16:165-170.
9	287.	de Vries W, Turner NM, Monsieurs KG, Bierens JJ, Koster RW. Comparison of
10	instru	ctor-led automated external defibrillation training and three alternative DVD-based training
11	metho	ds. Resuscitation. 2010;81:1004-1009.
12	288.	Doucet L, Lammens R, Hendrickx S, Dewolf P. App-based learning as an alternative for
13	instru	ctors in teaching basic life support to school children: a randomized control trial. Acta
14	Clinic	a Belgica. 2019;74:317-325.
15	289.	Dracup K, Moser DK, Doering LV, Guzy PM. Comparison of cardiopulmonary
16	resusc	itation training methods for parents of infants at high risk for cardiopulmonary arrest.
17	Annal	s of Emergency Medicine. 1998;32:170-177.
18	290.	Einspruch EL, Lynch B, Aufderheide TP, Nichol G, Becker L. Retention of CPR skills
19	learne	d in a traditional AHA Heartsaver course versus 30-min video self-training: a controlled
20	rando	mized study. Resuscitation. 2007;74:476-486.
21	291.	Hassan EA, Elsaman SEA. The effect of simulation-based flipped classroom on
22	acquis	sition of cardiopulmonary resuscitation skills: A simulation-based randomized trial. Nurs
23	Crit C	Care. 2023;28:344-352. doi: 10.1111/nicc.12816

1	292. Hasselager A, Bohnstedt C, Ostergaard D, Sonderskov C, Bihrmann K, Tolsgaard MG,
2	Lauritsen TLB. Improving the cost-effectiveness of laypersons' paediatric basic life support
3	skills training: A randomised non-inferiority study. Resuscitation. 2019;138:28-35.
4	293. Heard DG, Andresen KH, Guthmiller KM, Lucas R, Heard KJ, Blewer AL, Abella BS,
5	Gent LM, Sasson C. Hands-Only Cardiopulmonary Resuscitation Education: A Comparison of
6	On-Screen With Compression Feedback, Classroom, and Video Education. Annals of Emergency
7	Medicine. 2019;73:599-609.
8	294. Kim HS, Kim HJ, Suh EE. The Effect of Patient-centered CPR Education for Family
9	Caregivers of Patients with Cardiovascular Diseases. Journal of Korean Academy of Nursing.
10	2016;46:463-474.
11	295. Krogh LQ, Bjornshave K, Vestergaard LD, Sharma MB, Rasmussen SE, Nielsen HV,
12	Thim T, Lofgren B. E-learning in pediatric basic life support: a randomized controlled non-
13	inferiority study. Resuscitation. 2015;90:7-12.
14	296. Liberman M, Golberg N, Mulder D, Sampalis J. Teaching cardiopulmonary resuscitation
15	to CEGEP students in Quebeca pilot project. Resuscitation. 2000;47:249-257.
16	297. Lynch B, Einspruch EL, Nichol G, Becker LB, Aufderheide TP, Idris A. Effectiveness of
17	a 30-min CPR self-instruction program for lay responders: a controlled randomized study.
18	Resuscitation. 2005;67:31-43.
19	298. Lynch B, Einspruch EL. With or without an instructor, brief exposure to CPR training
20	produces significant attitude change. Resuscitation. 2010;81:568-575.
21	299. Lyness AL. Effectiveness of Interactive Video to Teach CPR Theory and Skills. 1985:1-
22	17.
23	300. Mancini ME, Cazzell M, Kardong-Edgren S, Cason CL. Improving workplace safety
24	training using a self-directed CPR-AED learning program. AAOHN Journal. 2009;57:159-167;
25	quiz 168.

Greif 131

1	301. Marcus M, Abdullah AA, Nor J, Tuan Kamauzaman TH, Pang NTP. Comparing the
2	effectiveness of a group-directed video instruction versus instructor-led traditional classroom
3	instruction for learning cardiopulmonary resuscitation skills among first-year medical students:
4	A prospective randomized controlled study. GMS J Med Educ. 2022;39:Doc45. doi:
5	10.3205/zma001566
6	302. Meischke HW, Rea T, Eisenberg MS, Schaeffer SM, Kudenchuk P. Training seniors in
7	the operation of an automated external defibrillator: a randomized trial comparing two training
8	methods. Annals of Emergency Medicine. 2001;38:216-222.
9	303. Nas J, Thannhauser J, Vart P, Van Geuns RJ, Muijsers HEC, Mol JQ, Aarts GWA,
10	Konijnenberg LSF, Gommans DHF, Ahoud-Schoenmakers SGAM, et al. Effect of Face-to-Face
11	vs Virtual Reality Training on Cardiopulmonary Resuscitation Quality: A Randomized Clinical
12	Trial. JAMA Cardiology. 2020;5:328-335.
13	304. Pedersen TH, Kasper N, Roman H, Egloff M, Marx D, Abegglen S, Greif R. Self-
14	learning basic life support: A randomised controlled trial on learning conditions. Resuscitation.
15	2018;126:147-153.
16	305. Raaj N, Gopichandran L, Kumar BD, Devagourou V, Sanjeev B. A Comparative Study to
17	Evaluate the Effectiveness of Mannequin Demonstration Versus Video Teaching Programme on
18	Basic Life Support to the Family Members of Adult Patients at High Risk of Cardiopulmonary
19	Arrest. International Journal of Nursing Education. 2016;8:142-147. doi: 10.5958/0974-
20	9357.2016.00141.0
21	306. Reder S, Cummings P, Quan L. Comparison of three instructional methods for teaching
22	cardiopulmonary resuscitation and use of an automatic external defibrillator to high school
23	students. Resuscitation. 2006;69:443-453.
24	307. Roppolo LP, Heymann R, Pepe P, Wagner J, Commons B, Miller R, Allen E, Horne L,

Wainscott MP, Idris AH. A randomized controlled trial comparing traditional training in
 © 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

- cardiopulmonary resuscitation (CPR) to self-directed CPR learning in first year medical students:
 The two-person CPR study. *Resuscitation*. 2011;82:319-325.
- 3 308. Todd KH, Braslow A, Brennan RT, Lowery DW, Cox RJ, Lipscomb LE, Kellermann
- 4 AL. Randomized, controlled trial of video self-instruction versus traditional CPR training.
- 5 Annals of Emergency Medicine. 1998;31:364-369.
- 6 309. Todd KH, Heron SL, Thompson M, Dennis R, O'Connor J, Kellermann AL. Simple CPR:
- 7 A randomized, controlled trial of video self-instructional cardiopulmonary resuscitation training
- 8 in an African American church congregation. *Annals of Emergency Medicine*. 1999;34:730-737.
- 9 310. Van Raemdonck V, Monsieurs KG, Aerenhouts D, De Martelaer K. Teaching basic life
- 10 support: a prospective randomized study on low-cost training strategies in secondary schools.
- 11 European Journal of Emergency Medicine. 2014;21:284-290.
- 12 311. Yeung J, Kovic I, Vidacic M, Skilton E, Higgins D, Melody T, Lockey A. The school
- 13 Lifesavers study-A randomised controlled trial comparing the impact of Lifesaver only, face-to-
- 14 face training only, and Lifesaver with face-to-face training on CPR knowledge, skills and
- 15 attitudes in UK school children. *Resuscitation*. 2017;120:138-145.
- 16 312. !!! INVALID CITATION !!! 244,246-256,258-268,271,272;
- 17 313. Cortegiani A A-GC, Nabecker S, Olaussen A, Lauridsen KG, Lin J, Ippolito M, Sawyer
- 18 T, Lockey A, Cheng A, Greif R on behalf of the International Liaison Committee on
- 19 Resuscitation Education, Implementation and Teams Task Force (EIT) Life Support Task Force.
- 20 In situ (workplace-based) simulation-based cardiopulmonary resuscitation training: EIT 6407 TF
- 21 SR. 2024. Updated. Accessed 14 December. https://costr.ilcor.org/document/in-situ-workplace-
- 22 <u>based-simulation-based-cardiopulmonary-resuscitation-training-eit-6407-tf-sr</u>
- 23 314. Clarke SO, Julie IM, Yao AP, Bang H, Barton JD, Alsomali SM, Kiefer MV, Al Khulaif
- 24 AH, Aljahany M, Venugopal S, et al. Longitudinal exploration of in situ mock code events and

- 1 the performance of cardiac arrest skills. *BMJ Simul Technol Enhanc Learn*. 2019;5:29-33. doi:
- 2 10.1136/bmjstel-2017-000255
- 3 315. Herbers MD, Heaser JA. Implementing an in Situ Mock Code Quality Improvement
- 4 Program. Am J Crit Care. 2016;25:393-399. doi: 10.4037/ajcc2016583
- 5 316. Mei Q, Zhang T, Chai J, Liu A, Liu Y, Zhu H. Application of In Situ Scenario Simulation
- 6 in Advanced Cardiac Life Support Training for Eight-year Medicinal Students. *Xiehe Yixue*
- 7 Zazhi. 2023;14:660-664. doi: https://doi.org/10.12290/xhyxzz.2022-0676
- 8 317. Sullivan NJ, Duval-Arnould J, Twilley M, Smith SP, Aksamit D, Boone-Guercio P,
- 9 Jeffries PR, Hunt EA. Simulation exercise to improve retention of cardiopulmonary resuscitation
- 10 priorities for in-hospital cardiac arrests: A randomized controlled trial. Resuscitation. 2015;86:6-
- 11 13. doi: <u>https://doi.org/10.1016/j.resuscitation.2014.10.021</u>
- 12 318. Hammontree J, Kinderknecht CG. An In Situ Mock Code Program in the Pediatric
- 13 Intensive Care Unit: A Multimodal Nurse-Led Quality Improvement Initiative. Crit Care Nurse.
- 14 2022;42:42-55. doi: 10.4037/ccn2022631
- 15 319. Knight LJ, Gabhart JM, Earnest KS, Leong KM, Anglemyer A, Franzon D. Improving
- 16 Code Team Performance and Survival Outcomes: Implementation of Pediatric Resuscitation
- 17 Team Training*. Critical Care Medicine. 2014;42:243-251. doi:
- 18 10.1097/CCM.0b013e3182a6439d
- 19 320. Kurosawa H, Ikeyama T, Achuff P, Perkel M, Watson C, Monachino A, Remy D,
- 20 Deutsch E, Buchanan N, Anderson J, et al. A Randomized, Controlled Trial of In Situ Pediatric
- 21 Advanced Life Support Recertification ("Pediatric Advanced Life Support Reconstructed")
- 22 Compared With Standard Pediatric Advanced Life Support Recertification for ICU Frontline
- 23 Providers*. Critical Care Medicine. 2014;42:610-618. doi: 10.1097/ccm.00000000000024

1	321. Rubio-Gurung S, Putet G, Touzet S, Gauthier-Moulinier H, Jordan I, Beissel A, Labaune
2	J-M, Blanc S, Amamra N, Balandras C, et al. In Situ Simulation Training for Neonatal
3	Resuscitation: An RCT. Pediatrics. 2014;134:e790-e797. doi: 10.1542/peds.2013-3988
4	322. Xu C, Zhang Q, Xue Y, Chow C-B, Dong C, Xie Q, Cheung P-Y. Improved neonatal
5	outcomes by multidisciplinary simulation-a contemporary practice in the demonstration area of
6	China. Frontiers in Pediatrics. 2023;11 doi: 10.3389/fped.2023.1138633
7	323. Donoghue A AK, Cortegiani A, Schnaubelt S, Cheng A, Lockey A, Greif R on behalf of
8	the International Liaison Committee on Resuscitation Education, Implementation and Teams
9	Task Force (EIT). Manikin fidelity in resuscitation education: EIT 6410 TF SR. 2024. Updated.
10	Accessed 14 December. https://costr.ilcor.org/document/manikin-fidelity-in-resuscitation-
11	education-eit-6410-tf-sr
12	324. Aqel AA, Ahmad MM. High-fidelity simulation effects on CPR knowledge, skills,
13	acquisition, and retention in nursing students. Worldviews Evid Based Nurs. 2014;11:394-400.
14	doi: 10.1111/wvn.12063
15	325. Campbell DM, Barozzino T, Farrugia M, Sgro M. High-fidelity simulation in neonatal
16	resuscitation. Paediatrics and Child Health. 2009;14:19-23. doi: 10.1093/pch/14.1.19
17	326. Cheng A, Hunt EA, Donoghue A, Nelson-McMillan K, Nishisaki A, Leflore J, Eppich
18	W, Moyer M, Brett-Fleegler M, Kleinman M, et al. Examining pediatric resuscitation education
19	using simulation and scripted debriefing: a multicenter randomized trial. JAMA Pediatr.
20	2013;167:528-536. doi: 10.1001/jamapediatrics.2013.1389
21	327. Conlon LW, Rodgers DL, Shofer FS, Lipschik GY. Impact of levels of simulation
22	fidelity on training of interns in ACLS. Hosp Pract (1995). 2014;42:135-141. doi:
23	10.3810/hp.2014.10.1150
24	328. Curran V, Fleet L, White S, Bessell C, Deshpandey A, Drover A, Hayward M, Valcour J.

A randomized controlled study of manikin simulator fidelity on neonatal resuscitation program
 © 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

- learning outcomes. *Adv Health Sci Educ Theory Pract*. 2015;20:205-218. doi: 10.1007/s10459 014-9522-8
- 3 Donoghue AJ, Durbin DR, Nadel FM, Stryjewski GR, Kost SI, Nadkarni VM. Effect of 329. 4 high-fidelity simulation on Pediatric Advanced Life Support training in pediatric house staff: a 5 randomized trial. Pediatr Emerg Care. 2009;25:139-144. doi: 10.1097/PEC.0b013e31819a7f90 6 330. Finan E, Bismilla Z, Whyte HE, Leblanc V, McNamara PJ. High-fidelity simulator 7 technology may not be superior to traditional low-fidelity equipment for neonatal resuscitation 8 training. J Perinatol. 2012;32:287-292. doi: 10.1038/jp.2011.96 9 331. Hoadley TA. Learning advanced cardiac life support: a comparison study of the effects of 10 low- and high-fidelity simulation. Nurs Educ Perspect. 2009;30:91-95. 11 332. King JM, Reising DL. Teaching advanced cardiac life support protocols: the 12 effectiveness of static versus high-fidelity simulation. Nurse Educ. 2011;36:62-65. doi: 13 10.1097/NNE.0b013e31820b5012 14 Lo BM, Devine AS, Evans DP, Byars DV, Lamm OY, Lee RJ, Lowe SM, Walker LL. 333. Comparison of traditional versus high-fidelity simulation in the retention of ACLS knowledge. 15 16 Resuscitation. 2011;82:1440-1443. doi: 10.1016/j.resuscitation.2011.06.017 17 334. Massoth C, Röder H, Ohlenburg H, Hessler M, Zarbock A, Pöpping DM, Wenk M. High-18 fidelity is not superior to low-fidelity simulation but leads to overconfidence in medical students. 19 BMC Med Educ. 2019;19:29. doi: 10.1186/s12909-019-1464-7 20 335. McCoy CE, Rahman A, Rendon JC, Anderson CL, Langdorf MI, Lotfipour S, 21 Chakravarthy B. Randomized Controlled Trial of Simulation vs. Standard Training for Teaching 22 Medical Students High-quality Cardiopulmonary Resuscitation. West J Emerg Med. 2019;20:15-23 22. doi: 10.5811/westjem.2018.11.39040

1	336. Nimbalkar A, Patel D, Kungwani A, Phatak A, Vasa R, Nimbalkar S. Randomized
2	control trial of high fidelity vs low fidelity simulation for training undergraduate students in
3	neonatal resuscitation. BMC Res Notes. 2015;8:636. doi: 10.1186/s13104-015-1623-9
4	337. Owen DD, McGovern SK, Murray A, Leary M, Del Rios M, Merchant RM, Abella BS,
5	Dutwin D, Blewer AL. Association of race and socioeconomic status with automatic external
6	defibrillator training prevalence in the United States. Resuscitation. 2018;127:100-104. doi:
7	10.1016/j.resuscitation.2018.03.037
8	338. Rishipathak P, Hinduja A, Sengupta N. A comparative analysis of self-efficacy in low
9	fidelity vs high fidelity simulation post advanced cardiac life support (ACLS) sessions on cardiac
10	arrest algorithm amongst EMS students of Pune, India. Indian Journal of Public Health
11	Research and Development. 2020;11:415-419. doi: 10.37506/v11/i1/2020/ijphrd/193853
12	339. Rodgers DL, Securro S, Jr., Pauley RD. The effect of high-fidelity simulation on
13	educational outcomes in an advanced cardiovascular life support course. Simul Healthc.
14	2009;4:200-206. doi: 10.1097/SIH.0b013e3181b1b877
15	340. Roh YS. Effects of high-fidelity patient simulation on nursing students' resuscitation-
16	specific self-efficacy. Comput Inform Nurs. 2014;32:84-89. doi: 10.1097/cin.000000000000034
17	341. Settles J, Jeffries PR, Smith TM, Meyers JS. Advanced cardiac life support instruction:
18	do we know tomorrow what we know today? J Contin Educ Nurs. 2011;42:271-279. doi:
19	10.3928/00220124-20110315-01
20	342. Stellflug SM, Lowe NK. The Effect of High Fidelity Simulators on Knowledge Retention
21	and Skill Self Efficacy in Pediatric Advanced Life Support Courses in a Rural State. J Pediatr
22	Nurs. 2018;39:21-26. doi: 10.1016/j.pedn.2017.12.006
23	343. Thomas EJ, Williams AL, Reichman EF, Lasky RE, Crandell S, Taggart WR. Team
24	training in the neonatal resuscitation program for interns: teamwork and quality of resuscitations.

25 Pediatrics. 2010;125:539-546. doi: 10.1542/peds.2009-1635

1	344.	Tufts LM, Hensle	y CA, Frazier MD,	Hossino D, I	Domanico RS,	Harris JK, Flesher SL

- 2 Utilizing High-fidelity Simulators in Improving Trainee Confidence and Competency in Code
- 3 Management. *Pediatr Qual Saf.* 2021;6:e496. doi: 10.1097/pq9.00000000000496
- 4 345. Nabecker S, Nation K, Gilfoyle E, Abelairas-Gomez C, Koota E, Lin Y, Greif R.
- 5 Cognitive aids used in simulated resuscitation: A systematic review. *Resusc Plus*.
- 6 2024;19:100675. doi: 10.1016/j.resplu.2024.100675
- 7 346. Nelin S, Karam S, Foglia E, Turk P, Peddireddy V, Desai J. Does the Use of an
- 8 Automated Resuscitation Recorder Improve Adherence to NRP Algorithms and Code
- 9 Documentation? *Children*. 2024;11
- 10 347. Senter-Zapata M, Neel DV, Colocci I, Alblooshi A, Alradini F, Quach B. An Advanced
- 11 Cardiac Life Support Application Improves Performance during Simulated Cardiac Arrest. Appl
- 12 Clin Inform. 2024;15:798-807.
- 13 348. Spencer R, Sen AI, Kessler DO, Salabay K, Compagnone T, Zhang Y. Critical Event
- 14 Checklists for Simulated In-Hospital Dysrhythmias in Children with Heart Disease. *Pediatric*
- 15 *Cardiology*. 2024;
- 16 349. Liu CH, Yang CW, Lockey A, Greif R, Cheng A. Factors influencing workload and
- 17 stress during resuscitation A scoping review. *Resusc Plus*. 2024;18:100630. doi:
- 18 10.1016/j.resplu.2024.100630
- 19 350. Breckwoldt J, Cheng A, Lauridsen KG, Lockey A, Yeung J, Greif R. Stepwise approach
- 20 to skills teaching in resuscitation: A systematic review. *Resusc Plus.* 2023;16:100457. doi:
- 21 10.1016/j.resplu.2023.100457
- 22 351. Heriwardito A, Ramlan AAW, Basith A, Aristya L. Effectiveness of endotracheal
- 23 intubation and mask ventilation procedural skills training on second-year student using modified
- 24 Peyton's Four-Step approach during COVID-19 pandemic. *Med Educ Online*. 2023;28:2256540.
- 25 doi: 10.1080/10872981.2023.2256540

- 1 352. Cheng A, Fijacko N, Lockey A, Greif R, Abelairas-Gomez C, Gosak L, Lin Y. Use of
- 2 augmented and virtual reality in resuscitation training: A systematic review. *Resusc Plus*.
- 3 2024;18:100643. doi: 10.1016/j.resplu.2024.100643
- 4 353. Aksoy ME, Ozkan AE, Kitapcioglu D, Usseli T. Comparing the Outcomes of Virtual
- 5 Reality-Based Serious Gaming and Lecture-Based Training for Advanced Life Support Training:
- 6 Randomized Controlled Trial. JMIR Serious Games. 2023;11
- 7 354. Alcázar Artero PM, Greif R, Cerón Madrigal JJ, Escribano D, Pérez Rubio MT, Alcázar
- 8 Artero ME, López Guardiola P, Mendoza López M, Melendreras Ruiz R, Pardo Ríos M.
- 9 Teaching cardiopulmonary resuscitation using virtual reality: A randomized study. Australas
- 10 Emerg Care. 2024;27:57-62. doi: 10.1016/j.auec.2023.08.002
- 11 355. Figols Pedrosa M, Barra Perez A, Vidal-Alaball J, Miro-Catalina Q, Forcada Arcarons A.
- 12 Use of virtual reality compared to the role-playing methodology in basic life support training: a
- 13 two-arm pilot community-based randomised trial. *BMC Med Educ*. 2023;23:50. doi:
- 14 10.1186/s12909-023-04029-2
- 15 356. Giacomini F, Querci L, Dekel B. Mixed Reality Mass or Self-directed Training for
- 16 Adolescents' Basic Life Support Instruction: A Prospective, Randomized Pilot Study. The Open
- 17 Anesthesiology Journal. 2023;17
- 18 357. Sungur H, Van Berlo Z, Lüwa LM. Enhancing Cardiopulmonary Resuscitation Training
- 19 with Mixed Reality: Improving Cardiopulmonary Resuscitation Performance and Enjoyment.
- 20 Cyberpsychology, Behavior, and Social Networking. 2024;27:379-386.
- 21 358. Pérez Rubio MT, González Ortiz JJ, López Guardiola P, Alcázar Artero PM, Soto
- 22 Castellón MB, Ocampo Cervantes AB, Pardo Ríos M. Realidad virtual para enseñar reanimación
- 23 cardiopulmonar en el Grado de Educación Primaria. Estudio comparativo. RIED Rev Iberoam
- 24 Educ Distancia. 2023;26:309-325. doi: 10.5944/ried.26.2.36232

1	359. Shatpattananunt B, Petpichetchian W, Pinsuwan S, Chaloempong T, Waraphok S,
2	Wongwatkit C. Development and evaluation of a virtual reality basic life support for
3	undergraduate students in Thailand: a project by Mae Fah Luang University (MFU BLiS VR).
4	BMC Med Educ. 2023;23
5	360. Lin Y LA, Greif R, Abelairas Gomez C, Gosak L, Fijacko N, Cheng A on behalf of the
6	International Liaison Committee on Resuscitation Education, Implementation and Teams Task
7	Force (EIT). Immersive technologies for resuscitation education (EIT 6405) TF SR. 2024.
8	Updated. Accessed 14 January. https://costr.ilcor.org/document/immersive-technologies-for-
9	resuscitation-education-eit-6405-tf-sr
10	361. Elgohary M, Palazzo FS, Breckwoldt J, Cheng A, Pellegrino J, Schnaubelt S, Greif R,
11	Lockey A. Blended learning for accredited life support courses - A systematic review. Resusc
12	Plus. 2022;10:100240. doi: 10.1016/j.resplu.2022.100240
13	362. Donoghue A, Sawyer T, Olaussen A, Greif R, Toft L. Gamified learning for resuscitation
14	education: A systematic review. Resusc Plus. 2024;18:100640. doi:
15	10.1016/j.resplu.2024.100640
16	363. Bilodeau C, Schmölzer GM, Cutumisu M. A randomized controlled simulation trial of a
17	neonatal resuscitation digital game simulator for labour and delivery room staff. Children
18	(Basel). 2024;11:793. doi: 10.3390/children11070793
19	364. Cutumisu M, Schmölzer GM. The effects of a digital game simulator versus a traditional
20	intervention on paramedics' neonatal resuscitation performance. Children (Basel). 2024;11:174.
21	doi: 10.3390/children11020174
22	365. Kim K, Choi D, Shim H, Lee CA. Effects of gamification in advanced life support
23	training for clinical nurses: A cluster randomized controlled trial. Nurse Educ Today.
24	2024;140:106263. doi: 10.1016/j.nedt.2024.106263

1	366. Lin Y, Lockey A, Greif R, Cheng A. The effect of scripted debriefing in resuscitation
2	training: A scoping review. Resusc Plus. 2024;18:100581. doi: 10.1016/j.resplu.2024.100581
3	367. Abelairas-Gómez C, Cortegiani A, Sawyer T, Greif R, Donoghue A. Rapid cycle
4	deliberate practice approach on resuscitation training: A systematic review. Resusc Plus.
5	2024;18:100648. doi: 10.1016/j.resplu.2024.100648
6	368. Coelho LP, Farhat SCL, Severini RdSG, Souza ACA, Rodrigues KR, Bello FPS,
7	Schvartsman C, Couto TB. Rapid cycle deliberate practice versus postsimulation debriefing in
8	pediatric cardiopulmonary resuscitation training: a randomized controlled study. Einstein (Sao
9	Paulo). 2024;22 doi: 10.31744/einstein_journal/2024ao0825
10	369. Raper JD, Khoury CA, Marshall A, Smola R, Pacheco Z, Morris J, Zhai G, Berger S,
11	Kraemer R, Bloom AD. Rapid cycle deliberate practice training for simulated cardiopulmonary
12	resuscitation in resident education. West J Emerg Med. 2024;25:197-204. doi:
13	10.5811/westjem.17923
14	370. Farquharson B, Cortegiani A, Lauridsen KG, Yeung J, Greif R, Nabecker S. Teaching
15	team competencies within resuscitation training: A systematic review. Resusc Plus.
16	2024;19:100687. doi: 10.1016/j.resplu.2024.100687
17	371. Ohlenburg H, Arnemann PH, Hessler M, Gorlich D, Zarbock A, Friederichs H. Flipped
18	Classroom: Improved team performance during resuscitation training through interactive pre-
19	course content - a cluster-randomised controlled study. BMC Med Educ. 2024;24
20	372. Yun S, Park HA, Na SH, Yun HJ. Effects of communication team training on clinical
21	competence in Korean Advanced Life Support: A randomized controlled trial. Nurs Health Sci.
22	2024;26
23	373. Schnaubelt S, Monsieurs KG, Semeraro F, Schlieber J, Cheng A, Bigham BL, Garg R,
24	Finn JC, Greif R. Clinical outcomes from out-of-hospital cardiac arrest in low-resource settings -
25	A scoping review. Resuscitation. 2020;156:137-145. doi: 10.1016/j.resuscitation.2020.08.126

1	374. Schnaubelt S, Garg R, Atiq H, Baig N, Bernardino M, Bigham B, Dickson S, Geduld H,
2	Al-Hilali Z, Karki S, et al. Cardiopulmonary resuscitation in low-resource settings: a statement
3	by the International Liaison Committee on Resuscitation, supported by the AFEM, EUSEM,
4	IFEM, and IFRC. Lancet Glob Health. 2023;11:e1444-e1453. doi: 10.1016/s2214-
5	109x(23)00302-9
6	375. Yeung J, Djarv T, Hsieh MJ, Sawyer T, Lockey A, Finn J, Greif R. Spaced learning
7	versus massed learning in resuscitation - A systematic review. Resuscitation. 2020;156:61-71.

8 doi: 10.1016/j.resuscitation.2020.08.132