CONFIDENTIAL

1	2025 ILCOR Statement
2	2025 International Consensus on Cardiopulmonary Resuscitation and Emergency
3	Cardiovascular Care Science With Treatment Recommendations
4	Adult Basic Life Support
5	
6	Authors: Janet E. Bray (Chair); Micheal A. Smyth (Vice Chair); Gavin D. Perkins; Rebecca E.
7	Cash; Sung Phil Chung; Julie Considine; Katie N. Dainty; Vihara Dassanayake; Guillaume
8	Debaty; Maya Dewan; Bridget Dicker; Natasha Dodge; Fredrik Folke; Takanari Ikeyama;
9	Carolina Malta Hansen; Nicholas J. Johnson; George Lukas; Anthony Lagina; Siobhan
10	Masterson; Peter T. Morley; Laurie J. Morrison; Ziad Nehme; Tatsuya Norii; Violetta Raffay;
11	Giuseppe Ristagno; Aloka Samantaray; Federico Semeraro; Baljit Singh; Christopher M. Smith;
12	Christian Vaillancourt; Theresa M. Olasveengen; on behalf of the Adult Basic Life Support
13	Collaborators.

14

1 Abstract

2 The International Liaison Committee on Resuscitation conducts continuous review of 3 new, peer-reviewed published cardiopulmonary resuscitation science, and publishes more 4 comprehensive reviews every 5 years. The Basic Life Support Task Force chapter of the 2025 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular 5 6 Care Science With Treatment Recommendations addressed all published resuscitation evidence 7 reviewed by the Basic Life Support Task Force science experts since 2020. Topics addressed by 8 systematic reviews in the last year include chest compression-only cardiopulmonary 9 resuscitation, starting cardiopulmonary resuscitation with compressions or airway and breathing, 10 chest compression and ventilation ratios, durations of cardiopulmonary resuscitation cycles, hand 11 positioning during compressions, head-up cardiopulmonary resuscitation, ventilation feedback devices, and pad and paddle size and placement. Members from the Basic Life Support Task 12 13 Force have assessed, discussed, and debated the quality of the evidence, based on Grading of 14 Recommendations Assessment, Development, and Evaluation criteria, and their statements 15 include consensus treatment recommendations. Insights into the deliberations of the task force 16 are provided in the Justification and Evidence to Decision Framework Highlights sections. In 17 addition, the task force lists priority knowledge gaps for further research. 18 **Key words:** Heart arrest; resuscitation; basic life support; cardiopulmonary resuscitation;

- 19 defibrillation; automatic external defibrillators; drowning; obesity
- 20

1 INTRODUCTION

2	This is the International Liaison Committee on Resuscitation (ILCOR) Basic Life
3	Support (BLS) Task Force 2025 International Consensus on Cardiopulmonary Resuscitation
4	(CPR) and Emergency Cardiovascular Care Science With Treatment Recommendations
5	(CoSTR). All reviews conducted by the BLS Task Force in the last 12 months are included;
6	reviews conducted and published since the 2020 publication are also summarized to provide a
7	single reference document for readers. The BLS Task Force work presented here encompasses
8	33 questions reviewed in some capacity, including 22 systematic reviews (SysRevs). Draft
9	CoSTRs for all topics evaluated with SysRevs were posted on a rolling basis on the ILCOR
10	website. ¹ Each draft CoSTR includes the data reviewed and draft treatment recommendations,
11	with public comments accepted for 2 weeks after posting. The task force considered public
12	feedback and provided responses. All CoSTRs are now available online, adding to the existing
13	CoSTR statements.
14	Although only SysRevs can generate a full CoSTR and new treatment recommendations,
15	many other topics were evaluated with more streamlined processes, including scoping reviews
16	(ScopRevs) and evidence updates (EvUps). Good practice statements, which represent the expert
17	opinion of the task force in light of very limited or no direct evidence, can be generated after
18	ScopRevs and occasionally after EvUps in cases where the task force thinks providing guidance
19	is especially important. A separate article in this issue includes the full details of the evidence
20	evaluation process. ²
21	This summary statement contains the final wording of the treatment recommendations

and good practice statements as approved by the ILCOR BLS Task Force as well as summaries

23 of the key evidence identified. SysRevs include evidence-to-decision highlights and knowledge

24 gaps, and ScopRevs summarize Task Force insights on specific topics and include evidence-to-

decision highlights if good practice statements are generated. Links to the published reviews and
 full online CoSTRs are provided in the corresponding sections. Evidence-to-decision tables for
 SysRevs are provided in Appendix A, and the complete EvUp worksheets are provided in
 Appendix B. A summary of treatment recommendation changes and knowledge gaps is provided
 in Appendix C.

6 Most topics are presented using the population, intervention, comparator, outcomes, 7 study design, and time frame (PICOST) format. To minimize redundancy, the study designs have 8 been removed from the text except in cases where the designs differed from the BLS standard 9 criteria. The standard study designs included are randomized clinical trials (RCTs) and 10 nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, 11 and cohort studies) were eligible for inclusion. Case series, case reports, animal studies, and 12 unpublished studies (conference abstracts, trial protocols) were excluded. All languages were 13 included, provided there was an English abstract. 14 Two nodal reviews that included the BLS Task Force can be found in other CoSTR sections (Family Presence During Resuscitation³ and Resuscitation of Durable Mechanical 15 16 Circulatory Supported Patients⁴). The following topics are addressed in this BLS Task Force 17 CoSTR: 18 • CPR by rescuers wearing personal protective equipment (BLS 2003: SysRev 2023, EvUp 19 2025)

- Bystander (without dispatcher-assisted instructions) chest compression-only CPR versus
 conventional CPR (BLS 2100: SysRev 2025)
- Optimization of dispatcher-assisted recognition (BLS 2102: ScopRev 2024, EvUp 2025)
- Optimization of dispatcher-assisted CPR (BLS 2113: ScopRev 2024, EvUp 2025)

- Dispatcher-assisted chest compression-only CPR versus conventional CPR (BLS 2112:
 SysRev 2025)
- Optimization of dispatcher-assisted automated external defibrillator (AED) retrieval and
 use (BLS 2120: ScopRev 2024)
- 5 Drone AED delivery (BLS 2122: ScopRev, 2023 CoSTR summary; EvUp 2025)
- AED accessibility: locked cabinets (BLS 2123: ScopRev 2025)
- Starting CPR (compressions-airway-breathing [CAB] versus airway-breathing compressions [ABC]) (BLS 2201: SysRev 2025)
- 9 Compression-ventilation ratio (BLS 2202: SysRev 2025)
- 10 Duration of CPR cycles (BLS 2212: SysRev 2025)
- Emergency medical services (EMS) chest compression-only CPR versus conventional
 CPR (BLS 2221: SysRev 2025)
- In-hospital chest compression-only CPR versus conventional CPR (BLS 2222: SysRev
 2025)
- Hand position during compressions (BLS 2502: SysRev 2025)
- 16 Head-up CPR (BLS 2503: SysRev 2025)
- Minimizing pauses in compressions (BLS 2504: SysRev 2022, EvUp 2025)
- Optimal surface for CPR (BLS 2510: SysRev 2024)
- Feedback for CPR quality (BLS 2511: ScopRev 2024)
- Passive ventilation techniques (BLS 2403: SysRev 2022, EvUp 2025)
- Real-time ventilation quality feedback devices (BLS 2402: ScopRev 2025)
- Paddle/pad size and placement in adults (BLS 2601: SysRev 2025)
- Removal of bra prior to defibrillation (BLS 2604: ScopRev 2025)

1	• Effectiveness of ultraportable/pocket AEDs (BLS 2603: ScopRev 2025)
2	• Immediate resuscitation in water or on boat in drowning (BLS 2702/2703: ScopRev
3	2021, SysRev 2023, EvUp 2025)
4	• Starting CPR (CAB versus ABC) in drowning (BLS 2704: ScopRev 2023, SysRev 2024,
5	EvUp 2025)
6	• Chest-compression-only CPR in drowning (BLS 2705: ScopRev 2023, SysRev 2024,
7	EvUp 2025)
8	• Ventilation equipment in cardiac arrest following drowning (BLS 2706: ScopRev 2023,
9	SysRev 2024, EvUp 2025)
10	• Prehospital oxygen administration following drowning (BLS 2707: SysRev 2023, EvUp
11	2025)
12	• AED use versus CPR first in drowning (BLS 2708: ScopRev 2023, SysRev 2024, EvUp
13	2025)
14	• Public access defibrillation (PAD) programs for drowning (BLS 2709: SysRev 2023,
15	EvUp 2025)
16	• CPR during transport (BLS 2715: SysRev 2022, EvUp 2025)
17	• CPR in obese patients (BLS 2720: ScopRev 2025)
18	Readers are encouraged to monitor the ILCOR website ¹ to provide feedback on
19	planned SysRevs and to provide comments when additional draft reviews are posted.
20	SAFETY AND PREVENTION
21	CPR by Rescuers Wearing Personal Protective Equipment (BLS 2003: SysRev 2023, EvUp
22	2025)
23	A 2023 SysRev and 2025 EvUp examined the impact of rescuers wearing personal
24	protective equipment on patient and CPR outcomes. The details of this review can be found in
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on

Resuscitation.

the SysRev,⁵ the 2023 CoSTR summary^{6,7} and on the ILCOR website.⁸ The 2025 EvUp is
 provided in Appendix B.

3 Population, Intervention, Comparator, Outcome, and Time Frame

4	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
5	cardiac arrest (including simulated cardiac arrest)
6	• Intervention: CPR by rescuers wearing personal protective equipment
7	• Comparator: CPR by rescuers not wearing personal protective equipment
8	• Outcomes:
9	- Critical: Survival to discharge, return of spontaneous circulation (ROSC)
10	- Important: CPR quality, time to the procedure of interest, and rescuer's fatigue
11	and neuropsychiatric performance such as concentration and dexterity
12	• Time frame: May 23, 2022, to August 9, 2024
13	Summary of Evidence
14	The EvUp identified 4 additional studies.9-12 Because the new evidence does not alter the
15	current treatment recommendations, an update to the existing SysRev is not warranted.
16	Treatment Recommendations (2023)
17	We recommend monitoring for fatigue in all rescuers performing CPR (good practice
18	statement).
19	We suggest increased vigilance for fatigue in rescuers wearing personal protective
20	equipment (weak recommendation, very low-certainty evidence).

Bystander Chest Compression-Only CPR (Without Dispatcher Assistance) (BLS 2100,	
SysRev 2025)	
Rationale for Review	
The previous SysRev ¹³ and existing ILCOR treatment recommendation were first	
published in 2017. ^{14,15} This topic was prioritized because it had not been reviewed since 2017.	
The SysRev ¹⁶ was registered on Prospective Register of Systematic Reviews (PROSPERO)	
(CRD42024559318), and the full CoSTR for adults can be found on the ILCOR website. ¹⁷ To	
inform the provision of immediate bystander CPR, it was decided to examine this question	
without cases where dispatcher-assisted CPR (DA-CPR) instructions were provided. Four studies	
that included cases with DA-CPR and were previously included in this CoSTR ¹⁸⁻²¹ have been	
moved to the DA-CPR CoSTR.	
Population, Intervention, Comparator, Outcome, Study Design, and Time Frame	
• Population: Adults and children in any setting (in-hospital or out-of-hospital) with	
cardiac arrest	
• Intervention: Chest compression-only CPR without dispatcher assistance	
• Comparator: Conventional CPR with compressions and ventilations without dispatcher-	
assistance	
• Outcomes:	
- Critical: Favorable neurological survival (as measured by Cerebral Performance	
Category [CPC] or modified Rankin Scale [mRS]) at discharge or 30 days and at	

22 any time interval after 30 days

RECOGNITION AND EARLY ACCESS

1	- Important: survival to discharge or 30 days, survival to hospital admission,
2	survival to any time interval after discharge or 30 days survival, ROSC, quality of
3	life as measured by any indicator or score
4	• Study design: In addition to standard criteria, observational studies that reported only
5	unadjusted data were excluded.
6	• Time frame: Because the search terms were revised, ¹⁷ the search was all years to October
7	21, 2024.
8	Consensus on Science
9	No new studies that directly addressed this topic were found. The evidence remains 3
10	observational studies that compared bystander chest compression-only CPR with conventional
11	CPR at a ratio of 15:2 ^{22,23} and 30:2 ²⁴ in adults without DA-CPR instructions. Because 15:2 CPR
12	is no longer recommended, all outcomes with these studies were downgraded for indirectness.
13	No data was available from the included studies for the outcome of favorable neurological
14	survival. Data for this outcome is drawn from a study of combined bystander-only and DA-CPR
15	with a high prevalence of bystander-only CPR. ¹⁹ The evidence is summarized in Table 1.
16	Treatment Recommendations (2025, Unchanged From 2017)
17	We recommend that chest compressions be performed for all adults in cardiac arrest
18	(good practice statement).
19	We suggest that bystanders who are trained, able, and willing, give chest compressions
20	with rescue breaths for adults in cardiac arrest (weak recommendation, very low-certainty
21	evidence).
22	Justification and Evidence-to-Decision Framework Highlights

23 The complete evidence-to-decision table is included in Appendix A.

1	In making these recommendations, the task force acknowledged the very low-certainty
2	evidence in comparison with 15:2 CPR but placed greater emphasis on the need to give chest
3	compressions in adult CPR and the potential to increase rates of bystander CPR with chest
4	compression-only CPR or compression-focused CPR in adults. ^{20,25-27} The task force also
5	considered the following:
6	• The existing evidence suggests chest compression–only CPR is comparable to 15:2 CPR
7	in adults. Given the included studies were conducted without dispatcher assistance, it
8	could be assumed that the CPR was performed by CPR-trained individuals or off-duty
9	health care professionals.
10	• Three additional studies reported no difference in unadjusted patient outcomes between
11	chest compression-only CPR and conventional CPR. ²⁸⁻³⁰ One of these studies, conducted
12	in the 1980s, examined the impact of CPR quality. Using combined objective and
13	subjective measures, this study reported higher unadjusted survival when 15:2 was
14	performed correctly (good technique and effect), compared with incorrectly (31% versus
15	8%) or when compared with chest compression–only CPR (31% versus 20%). ³⁰ Rates of
16	correctly applied 15:2 were higher in bystanders who were health care professionals than
17	in lay bystanders (58% versus 42%). ³⁰
18	• A pilot RCT, including high rates of DA-CPR, showed no difference in survival at 1-day
19	between chest compression-only CPR and conventional CPR when delivered by trained
20	laypersons. ³¹
21	• Chest compression–only CPR is preferred by the public ^{32,33} and easier to learn and recall.
22	• A literature review reported that chest compression–only CPR results in a shorter time to
23	initiate CPR and a higher total number of chest compressions. ³⁴ However, as it continues,

rescuers may experience fatigue, which can reduce the depth of compressions compared
 with those delivered in conventional CPR with pauses for breaths.³⁴

• Opening the airway and delivering ventilations are technical skills, and bystanders,

4 especially if untrained or minimally trained, are typically unable to deliver effective

- 5 ventilations during simulated CPR.³⁵
- Both types of CPR are better than no CPR, and both should be taught in BLS/CPR
 training.
- 8 Knowledge Gaps
- The effect on outcomes of chest compression–only CPR compared with 30:2 CPR
- 10 without dispatcher assistance
- 11 Data in children are needed.

Table 1. The Evidence Comparing Chest Compression–Only CPR With Conventional CPR Without Dispatcher Assistance

Outcome (certainty of evidence)	Studies and patients	Results
Favorable neurological function (very low– certainty of evidence)	No studies without dispatcher assistance 1 cohort study of combined bystander (76% of cases) and DA- CPR (24% of cases) (4068 adult bystander-witnessed OHCAs) ¹⁹	CCO-CPR, compared with 15:2 CPR, was associated with favorable neurological function (aOR, 2.22 [95% CI, 1.17–4.21])
Survival to hospital discharge or 30 days (very low–certainty of evidence)	3 observational studies: 1 in adults ²⁴ and 2 in all ages ^{22,23}	Adult study: higher survival to hospital discharge with CCO-CPR compared with 30:2 CPR (aOR, 1.60 [95% CI, 1.08– 2.35]) ²⁴ All-age studies: no difference in survival to 30 days (aOR, 1.18 [95% CI, 0.89– 1.56]) ²³ or hospital discharge (aOR, 1.32 [95% CI, 0.35–4.94]) ²² with CCO-CPR compared with 15:2 CPR
Survival to hospital admission (very low– certainty of evidence)	1 observational study in all ages ²³	No difference with CCO-CPR compared with 15:2 CPR (aOR, 1.03 [95% CI, 0.86– 1.23])
ROSC (very low–certainty of evidence)	1 observational study in all ages ²²	No difference with CCO-CPR compared with 15:2 CPR (aOR, 1.02 [95% CI, 0.60– 1.73])

14 aOR indicates adjusted odds ratio; C-CPR, conventional CPR; CCO-CPR indicates chest compression–only CPR;

15 CPR, cardiopulmonary resuscitation; DA-CPR, dispatcher-assisted CPR; OHCA, out-of-hospital cardiac arrest; and

16 ROSC, return of spontaneous circulation.

1 Optimization of Dispatcher-Assisted Recognition of OHCA (BLS 2102: ScopRev 2024,

2 EvUp 2025)

3	This topic was first reviewed in an ILCOR nodal SysRev in 2020, ³⁶ with treatment
4	recommendations for dispatcher-assisted recognition of out-of-hospital cardiac arrest (OHCA)
5	published in the 2020 CoSTR. ^{37,38} In 2024, the BLS Task Force decided to conduct a ScopRev to
6	examine the evidence for interventions aiming to optimize dispatcher-assisted recognition of
7	OHCA), with an EvUp conducted in 2025. The details of this review can be found in the
8	ScopRev, ³⁹ the 2024 CoSTR summary, ^{40,41} and on the ILCOR website. ⁴² The 2025 EvUp is
9	provided in Appendix B.
10	Population, Intervention, Comparator, Outcome, and Time Frame
11	• Population: Adults and children who are in cardiac arrest outside of a hospital
12	• Intervention: Factors and interventions that improve dispatcher-assisted recognition of
13	cardiac arrest
14	Outcomes: Dispatcher-assisted recognition of cardiac arrest
15	• Time frame: June 2, 2023, to November 4, 2024
16	Summary of Evidence
17	The EvUp identified 2 additional studies. ^{43,44} The new evidence provided by these studies
18	does not warrant a new SysRev.
19	Treatment Recommendations (2020)
20	We recommend that dispatch centers implement a standardized algorithm and/or
21	standardized criteria to immediately determine if a patient is in cardiac arrest at the time of
22	emergency call (strong recommendation, very low-certainty evidence).

- We suggest that dispatch centers monitor and track diagnostic capability (good practice
 statement).
- We suggest that dispatch centers look for ways to optimize sensitivity (minimize false
 negatives) (good practice statement).
- 5 Optimization of Dispatcher-Assisted CPR (BLS 2113: ScopRev 2024, EvUp 2025)
- 6 This topic was last reviewed in an ILCOR nodal SysRev in 2019, with treatment
- 7 recommendations for dispatcher-assisted recognition of OHCA published in the 2019 CoSTR
- 8 summary.^{45,46} In 2024, the BLS task force decided to conduct a ScopRev to examine the
- 9 evidence for interventions to optimize DA-CPR instructions, with an EvUp conducted in 2025.
- 10 The details of this review can be found in the ScopRev,⁴⁷ the 2024 CoSTR summary,^{40,41} and on
- 11 the ILCOR website.⁴⁸ The 2025 EvUp is provided in Appendix B).
- 12 Population, Intervention, Comparator, Outcome, and Time Frame
- Population: Adults and children with OHCA when DA-CPR is implemented
- Intervention: Interventions used in addition to DA-CPR
- 15 Comparators: Nonmodified DA-CPR
- 16 Outcomes: Any outcomes
- 17 Time frame: May 17, 2023, to November 1, 2024
- 18 Summary of Evidence
- 19 The EvUp identified 9 additional studies.⁴⁹⁻⁵⁷ The new evidence does not warrant a new

20 SysRev.

1	Treatment Recommendations (2019 and 2024)
2	We recommend that emergency medical dispatch centers have systems in place to enable
3	call handlers to provide CPR instructions for adult patients in cardiac arrest (strong
4	recommendation, very low-certainty evidence).
5	We recommend that emergency medical dispatchers provide CPR instructions (when
6	deemed necessary) for adult patients in cardiac arrest (strong recommendation, very low-
7	certainty evidence).
8	The existing evidence did not support a good practice statement for interventions to
9	improve DA-CPR instructions.
10	Dispatcher-Assisted Chest Compression–Only CPR (BLS 2112, SysRev 2025)
11	Rationale for Review
12	The previous SysRev ¹³ and existing ILCOR treatment recommendation were first
13	published in 2017. ^{14,15} This topic was prioritized for a detailed review because it had not been
14	reviewed since 2017. The SysRev ¹⁶ was registered on PROSPERO (CRD42024559318), and the
15	full CoSTR can be found on the ILCOR website.58
16	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
17	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
18	cardiac arrest
19	• Intervention: Dispatcher-assisted chest compression-only CPR
20	• Comparators: Dispatcher-assisted conventional CPR with compressions and ventilations
21	• Study design: In addition to standard criteria, observational studies that reported only
22	unadjusted data were excluded.
23	• Outcomes:

1	- Critical: favorable neurological survival (as measured by CPC or mRS) at
2	discharge or 30 days and at any time interval after 30 days
3	- Important: survival to discharge or 30 days, survival to hospital admission,
4	survival to any time interval after discharge or 30-days survival, ROSC, quality of
5	life as measured by any indicator or score
6	• Time frame: Because the search terms were revised, ¹⁷ search was inception to October
7	21, 2024.
8	Consensus on Science
9	Four RCTs ^{31,59-61} and 6 observational studies ^{18,19,62-65} were identified that compared
10	dispatcher-assisted chest compression-only CPR with conventional CPR at a ratio of 15:2 or
11	30:2 in adults or all ages, with or without bystander CPR ongoing at the time of the call. As 15:2
12	CPR is no longer recommended, all outcomes were downgraded for indirectness. The overall
13	certainty of evidence was rated as low to very low for all outcomes, primarily due to a very
14	serious risk of bias. Because of this and a high degree of heterogeneity, meta-analyses were not
15	performed. The evidence is summarized in Table 2.
16	Treatment Recommendations (2025, Unchanged From 2017)
17	We recommend that dispatchers provide chest compression-only CPR instructions to
18	callers for adults with suspected OHCA (strong recommendation, low-certainty of evidence).
19	Justification and Evidence-to-Decision Framework Highlights
20	The complete evidence-to-decision table is provided in Appendix A.
21	In making these recommendations, the task force acknowledged the low-certainty
22	evidence but strongly endorsed the 2020 CoSTR that all rescuers should perform chest
23	compressions for all patients in cardiac arrest. The task force also considered the following:

1	• Bystander CPR more than doubles OHCA survival. ⁶⁶ We placed a higher emphasis on the
2	importance of providing high-quality chest compressions and increasing the overall rate
3	of bystander CPR over providing rescue breaths.
4	• Increases in rates of bystander CPR and patient outcomes have been reported following
5	the introduction of dispatcher-assisted chest compression-only CPR or compression-
6	focused CPR in adults. ^{20,25-27} Using a chest compression-only CPR strategy may increase
7	the willingness of bystanders to respond during a cardiac arrest.
8	• Most bystander CPR for adults is given with DA-CPR instructions, even in the presence
9	of CPR-trained lay bystanders. ⁶⁷
10	• In making these recommendations, the task force took into consideration heterogeneity in
11	the body of evidence, particularly related to implementation of DA-CPR. Despite this,
12	most included studies suggested either a slight improvement in favor of dispatcher-
13	assisted chest compression-only CPR or no difference in patient outcomes, regardless of
14	patient population or comparison ratio.
15	Knowledge Gaps
16	• Studies in children
17	• The number of chest compressions that should be given, and for how long before
18	ventilation instructions are introduced
19	• Whether resuscitation instructions should be modified in the context of different causes
20	of arrest (eg, choking, drowning)
21	• The impact of prior CPR training
22 23	Table 2. The Evidence Comparing Dispatcher-Assisted Chest Compression–Only CPR With Conventional CPR

Outcome (certainty of evidence)	Studies and patients	Results
	1 adult RCT ⁵⁹	No difference compared with 15:2

Outcome (certainty of evidence)	Studies and patients	Results
Favorable neurological function (very low– certainty of evidence)	4 observational studies: 1 study included adult bystander-witnessed DA-CPR cases ⁶² and 3 studies examined combined bystander CPR and DA-CPR in adults ^{19,63} and all- age bystander-witnessed ⁶⁵ cases	3 cohort studies of combined bystander and DA-CPR cases, reported higher odds with CCO-CPR compared with 15:2 (aOR, 2.22 [95% CI, 1.17–4.21]) ¹⁹ or compared with combined 15:2 and 30:2 CPR (aOR, 1.12 [95% CI, 1.06–1.19]) ⁶⁵ 2 studies reported no difference compared with either 15:2 ⁶³ or 30:2 ⁶²
Survival to hospital discharge or 30 days (very	3 adult RCTs ⁵⁹⁻⁶¹	No difference in survival to hospital discharge compared with 15:2
low-certainty of evidence)	5 observational studies: 2 all- ages, ^{64,65} 2 adults, ^{18,62} and 1 adult- witnesed ⁶⁸	1 reported higher odds with CCO-CPR compared with C-CPR of either 15:2 or 30:2 (aOR, 1.05 [95% CI, 1.01–1.10]) ⁶⁵ 2 reported lower odds with CCO-CPR compared with either 15:2 (aOR, 0.69 [95% CI, 0.53–0.90]) ⁶⁴ or 30:2 CPR (aOR, 0.72 [95% CI, 0.59, 0.88]) ⁶² 2 studies reported no difference with DA CCO-CPR compared with either 15:2 ¹⁸ or 30:2 ⁶⁸
Survival to hospital admission (low-certainty of evidence)	4 RCTs: 3 adults ^{31,59,60} 1 all-age ⁶¹	No difference with DA CCO-CPR compared with either 15:2 ^{60,61} or 30:2 ³¹
ROSC (very low–certainty of evidence)	1 all-age observational study ⁶⁵	No difference compared with either 15:2 or 30:2 CPR

aOR indicates adjusted odds ratio; C-CPR, conventional CPR; CCO-CPR, chest compression-only CPR; CPR,

cardiopulmonary resuscitation; DA, dispatcher-assisted; DA-CPR, dispatcher-assisted cardiopulmonary

1 2 3 resuscitation; RCT, randomized control trial; ROSC, return of spontaneous circulation.

4 **Optimization of Dispatcher-Assisted AED Retrieval and Use (BLS 2120: ScopRev 2024)**

5

A 2024 ScopRev examined the evidence for a new BLS question on interventions to

6 optimize dispatcher-assisted AED retrieval and use for OHCA. The details of this review can be

7 found in the ScopRev,⁶⁹ the 2024 CoSTR summary,^{40,41} and on the ILCOR website.⁷⁰

8 Population, Intervention, Comparator, Outcome, and Time Frame

- 9 Population: Adults and children with OHCA •
- Intervention: Dispatcher-assisted AED retrieval and use 10
- 11 • Outcomes: Any outcomes
- 12 • Time frame: All years to April 13, 2023

1

Treatment Recommendations (2024)

2	EMS implementing dispatcher-assisted public access AED systems should monitor and
3	evaluate the effectiveness of their system (good practice statement).
4	Once a cardiac arrest is recognized during the emergency call and CPR has been started,
5	dispatchers should ask if there is an AED (or defibrillator) immediately available at the scene
6	and ask the caller to update them when one arrives (good practice statement).
7	If an AED is not immediately available and if there is more than 1 rescuer present,
8	dispatchers should offer instructions to locate and retrieve an AED. Retrieval instructions should
9	be supported, where resources allow, by up-to-date registries about public access AED locations
10	and accessibility (good practice statement).
11	Once an AED is available, dispatchers should offer instructions on its use (good practice
12	statement).
13	Drone Delivery of AEDs (BLS 2122: ScopRev 2023; EvUp 2025)
14	A ScopRev for 2023 and a 2025 EvUp examined the evidence on drone delivery of
15	AEDs. The details of this review can be found in the ScopRev, ⁷¹ the 2023 CoSTR summary, ^{6,7}
16	and on the ILCOR website. ⁷² The 2025 EvUp is provided in Appendix B.
17	Population, Intervention, Comparator, Outcome, and Time Frame
18	• Population: Adults and children in OHCA
19	• Intervention: Drone-delivered AEDs
20	• Comparators: Standard EMS response times (or time for EMS-delivered AED), AEDs
21	delivered by bystanders (or activated volunteer responders)
22	• Outcomes: Real-world/estimated feasibility, time gain of drone-delivered AEDs
23	(compared with standard EMS delivery), predicted survival, predicted quality-adjusted
24	life years gained, cost-effectiveness, and calculated proportion of defibrillation and

survival compared with cases where AEDs are brought to the OHCA scene by standard
 means

• Time frame: December 1, 2022, to August 6, 2024

4	Summary	of Evidence
---	---------	-------------

5 The EvUp identified 11 additional studies.⁷³⁻⁸³ The new evidence does not warrant a new 6 SysRev. There is no existing treatment recommendation on this topic, and the current evidence 7 does not support a new one.

8 AED Accessibility (Locked Cabinets) (BLS 2123: ScopRev 2025)

9 Rationale for Review

Rapid defibrillation is critical to improving patient outcomes because each minute of
delay in attempting defibrillation reduces the chances of survival and good functional
outcomes.⁸⁴⁻⁸⁶ Concerns about theft, vandalism, and misuse of AEDs have led to the use of
security measures, including using locked cabinets, to house these devices in public areas.⁸⁷⁻⁸⁹
Given the lack of a comprehensive review of this approach, this topic was prioritized for review
by the BLS Task Force. The full details of this review can be found in the ScopRev⁹⁰ and on the
ILCOR website.⁹¹

17 Population, Intervention, Comparator, Outcome, and Time Frame

• Population: Adults and children in out-of-hospital settings

Concept: The benefits and harms of placing AEDs in locked cabinets versus unlocked cabinets

Context: Any locations where an AED is placed with the intention of the AED being
 publicly accessible for use

- Outcomes: Any outcome, including AED outcomes (eg, AED use, time to AED use,
 AED vandalism or theft)
- Time frame: All years to June 25, 2024

4 Summary of Evidence

5 Ten reports were included: 7 observational studies reporting rates of theft and 6 vandalism,⁹²⁻¹⁰⁰1 survey reporting on harm to rescuers,¹⁰¹ and 2 AED retrieval simulation 7 studies.^{92,93} Four studies were reported as conference abstracts⁹⁷⁻¹⁰⁰ and 2 were letters to the 8 editor.^{94,96}

9 No study reported on the impact of locked AED cabinets on patient outcomes. Most 10 studies reported low rates (<2%) of theft, missing AEDs, or vandalism and this occurred in 11 locked and unlocked cabinets.⁹²⁻¹⁰⁰ The only study comparing unlocked and locked cabinets 12 showed minimal difference in theft and vandalism rates (0.3% versus 0.1%).⁹⁹ Two simulation 13 studies showed significantly slower AED retrieval when additional security measures, including 14 locked cabinets, were used.^{92,93} A survey of first responders reported half (n=25/50) were injured 15 while accessing an AED that required breaking glass to access.¹⁰¹

16 Task Force Insights

17 An evidence-to-decision table is provided in Appendix A.

- While acknowledging that most of the data identified has not undergone peer review and
 there may be publication bias, reported rates of AED theft and vandalism were low across
 all studies, and thefts occurred in both locked and unlocked cabinets. AEDs reported as
 stolen may have been used in an emergency and not returned.
 To ensure EMS is activated for OHCAs, some systems use cabinets locked with a code
- 23 obtained by calling EMS.¹⁰² However, this may cause delays, particularly if a telephone
- is not readily available, and its impact requires further study.¹⁰³

1	•	The cost to replace stolen or vandalized AEDs may be a challenge in low-resource
2		settings (eg, community groups with limited funding).

- We agree with the 2022 ILCOR scientific statement, which focuses on optimizing public
 access defibrillation and advises against using locked cabinets.^{104,105} If locked cabinets
- 5 are used, instructions for unlocking them need to be clear and ensure no delays in access.
- 6 Treatment Recommendations
- 7 We advise against using locked cabinets for public access defibrillator storage (good
 8 practice statement).
- 9 If locked cabinets are used for public access defibrillator storage, instructions for
- 10 unlocking them must be clear and ensure minimal delays in access (good practice statement).
- Emergency medical services should devise strategies to return public access defibrillators
 when used (good practice statement).

13 Knowledge Gaps

Peer-reviewed research and human studies on this topic, particularly studies focusing on real-life retrieval and the impact of security strategies on delivery times and patient outcomes

16 **BLS SEQUENCE**

17 Starting CPR (CAB Versus ABC) in Adults (BLS 2201, SysRev 2025)

18 *Rationale for Review*

19 This was a nodal review with BLS and the Pediatric Life Support (PLS) Task Forces. The

- 20 existing ILCOR treatment recommendation was last updated in 2020.^{37,38} This topic was
- 21 prioritized for a detailed nodal review because only EvUps had been done since 2020. The
- 22 pediatric CoSTR, treatment recommendations, and evidence-to-decision table are reported on the

1	ILCOR website ¹⁰⁶ and in the PLS CoSTR section. ¹⁰⁷ The SysRev ¹⁰⁸ was registered on
2	PROSPERO (CRD42024583890), and the full CoSTR can be found on the ILCOR website. ¹⁰⁹
3	Population, Intervention, Comparator, Outcome, and Time Frame
4	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
5	cardiac arrest
6	• Intervention: Commencing CPR with compressions first (30:2)
7	• Comparator: Commencing CPR with ventilations first (2:30)
8	• Outcomes:
9	- Critical: Survival with favorable neurological outcome at hospital discharge or 30
10	days, survival at hospital discharge or 30 days, survival with favorable
11	neurological outcome to 1 year, survival to 1 year, event survival, any ROSC
12	- Important: Time to commencement of rescue breaths, time to commencement of
13	first compression, time to completion of first CPR cycle, ventilation rate,
14	compression rate, chest compression fraction, minute ventilation
15	• Time frame: Because the search terms were revised, the search included all years to June
16	18, 2024.
17	Consensus on Science
18	One new pediatric manikin simulation study ¹¹⁰ (published with corrections ¹¹¹), in
19	addition to the 4 manikin simulation studies ¹¹²⁻¹¹⁵ found in the previous ILCOR
20	reviews, ^{37,38,116,117} were identified. Of the 5 manikin studies, 3 were randomized studies (1 in
21	adult ¹¹⁴ and 2 in pediatric resuscitation ^{110,113}), and 2 were observational studies in adult
22	resuscitation. ^{112,115}
23	No human studies were identified. Evidence was very low certainty for all outcomes,
24	downgraded for very serious risk of bias and indirectness. Because of this and a high degree of

1	heterogeneity, no meta-analyses could be performed, and individual studies are difficult to
2	interpret. This evidence from the manikin studies is summarized in Table 3.
3	Prior Treatment Recommendations (2020)
4	We suggest commencing CPR with compressions rather than ventilations (weak
5	recommendation, very low-certainty evidence).
6	Treatment Recommendations (2025)
7	The 2025 treatment recommendation in adults is unchanged from 2020. The pediatric
8	treatment recommendation is reported in the PLS CoSTR section. ¹⁰⁷
9	In adults in cardiac arrest, we suggest commencing CPR with compressions rather than
10	ventilations (weak recommendation, very low-certainty evidence).
11	Justification and Evidence-to-Decision Framework Highlights
12	The complete evidence-to-decision table is provided in Appendix A.
13	Please see the PLS section for evidence-to-decision highlights for children. In making
14	these recommendations for adults, the task forces considered the following:
15	Most of the existing evidence, all of very low certainty, suggests the following:
16	• Starting CPR with compressions first results in improvements in key elements of
17	resuscitation, such as commencement of chest compressions, completion of the first cycle
18	of compressions, and a higher chest compression fraction.
19	• Indirect evidence from before-and-after OHCA registry studies in adults suggests that
20	switching from the ABC to CAB approach was associated with increased rates of
21	bystander CPR ²⁵ and improved patient outcomes. ^{25,118,119} Similar data on in-hospital
22	cardiac arrest show conflicting evidence in patient outcomes. ^{120,121}
23	• While important uncertainties remain, in retaining this treatment recommendation in
24	adults, the BLS task force also considered

1	-	The benefits of a single training approach in adults
2	-	Effective chest compressions generate cumulative coronary perfusion pressure,
3		which falls to near zero when compressions stop. Therefore, early effective chest
4		compressions are vital to establishing and maintaining coronary perfusion
5		pressure. ¹²²
6	_	Time to first compression is associated with better patient outcomes. ¹²³
7	-	Bystanders are typically unable to deliver effective ventilations during simulated
8		CPR. ³⁵
9	-	Due to the public's concerns with mouth-to-mouth ventilation, ³² commencing
10		CPR with airway and ventilations may result in no bystander CPR being
11		provided.
12	_	Evidence suggests that delivering the ABC approach leads to more errors in
13		CPR, ¹¹³ that lay-bystanders prefer CAB, and that CAB is easier to learn and
14		retain. ¹¹³
15	-	The delivery of non-mouth-to-mouth ventilation requires the retrieval and
16		preparation of equipment (eg, bag-mask, pocket mask), which, when multiple
17		rescuers are present, can occur during chest compressions.
18	Knowledge G	aps
19	No hu	man studies directly evaluate this question in any setting. Because different
20	councils world	dwide have adopted CAB versus ABC, comparative studies of different registries

21 may provide evidence to answer this question.

Table 3. Compressions First (CAB) Compared With Ventilations First (ABC): Summary of Findings of Manikin Studies

Outcome (certainty of evidence	Studies (participants)	Results for cardiac arrest scenarios
Time to commencement of chest compressions (very low)	1 cross-over pediatric manikin RCT (159 two-person teams) ¹¹³ 1 adult manikin RCT (108 two-person teams) ¹¹⁴	CAB sequence resulted in faster mean time to chest compressions: 19.3 ± 2.6 versus 43.4 ± 5.0 seconds $(p<0.05)^{113}$; 25 ± 9 versus 43 ± 16 seconds $(p<0.001)^{114}$
	2 adult manikin observational studies (33 six-person teams ¹¹² ; 40 single rescuers ¹¹⁵)	CAB sequence was associated with shorter time to chest compressions: median=16.0 (IQR=14.0–26.0) versus 42.0 (IQR=41.5–59.0) seconds (p<0.001) ¹¹² ; and mean=15.4 \pm 3.0 versus 36.0 \pm 4.1 seconds (p<0.001) ¹¹⁵
Time to commencement of rescue breaths/ventilations (very low)	1 cross-over pediatric manikin RCT (159 two-person teams) ¹¹³ 1 adult manikin RCT (108	CAB sequence resulted in later mean times to commencement of ventilations: 28.4 ± 3.1 versus 22.7 ± 3.1 seconds (p<0.05) ¹¹³ ; 43 ± 10 versus 37 ± 15 seconds (p<0.001) ¹¹⁴
(very low)	two-person teams)	In the respiratory arrest scenario, CAB sequence resulted in faster mean time to commencement of ventilations: 19.1 ± 1.5 versus 22.7 ± 0.1 seconds $(p<0.05)^{113}$
Time to completion of first CPR cycle (30 chest compressions and 2 rescue breaths) (very low)	1 adult manikin RCT (108 two-person teams) ¹¹⁴	CAB sequence resulted in shorter mean times to completion of the first resuscitation cycle (30:2): 48±10 versus 63±17 seconds (p<0.001)
Ventilation rate (very low)	1 cross-over pediatric manikin RCT ¹¹⁰ (28 two-person teams)	In a sequence of delivering 5 rescue breaths before commencing chest compressions, ABC resulted in more ventilations delivered in the first minute of resuscitation: median 13 (IQR=12–15) versus 10 (IQR=8–10; p<0.05)
Compression rate (very low)	1 cross-over pediatric manikin RCT ¹¹⁰ (28 two-person teams)	No difference in compression rate
	1 adult manikin observational study teams (33 six-person teams) ¹¹²	No difference in compression rate
Compression depth (very low)	1 cross-over pediatric manikin RCT ¹¹⁰ (28 two-person teams)	No difference in median compression depth
	1 adult manikin observational study teams (33 six-person teams) ¹¹²	No difference in compression depth
CCF (very low)	1 cross-over pediatric manikin RCT ¹¹⁰ (28 two-person teams)	In a sequence of delivering 5 rescue breaths before commencing chest compressions, ABC resulted in lower median CCF 57% (IQR=54-64) versus 66% (IQR=59–68; p<0.001)
	1 adult manikin observational study teams (33 six-person teams) ¹¹²	No difference in CCF
Minute alveolar ventilation in the first minute of	1 cross-over pediatric manikin RCT ¹¹⁰ (28 two-person teams)	In a sequence of delivering 5 rescue breaths before commencing chest compressions, minute alveolar ventilation in the first minute of resuscitation was

Outcome (certainty of evidence	Studies (participants)	Results for cardiac arrest scenarios
resuscitation (very low)		higher with ABC: median 370 mL (IQR=203–472) versus 276 mL (IQR=140–360; p<0.001)

1 ABC indicates airway-breathing-compressions; CAB, compressions-airway-breathing; CCF, chest compression 2 fraction; IQR, interquartile range; RCT, randomized controlled trials.

3 Chest Compression-to-Ventilation Ratios (BLS 2202: SysRev 2025)

4 Rationale for Review

5 This was a nodal review with BLS and the PLS Task Forces. The previous SysRev¹³ and

6 existing ILCOR treatment recommendation was first published in 2017.^{14,15} This topic was

7 prioritized for a detailed review because it had not been reviewed since 2017. The SysRev¹⁶ was

8 registered on PROSPERO (CRD42024559318), and the full CoSTR can be found on the ILCOR

9 website.¹²⁴

10 Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- Population: Adults and children in-hospital with cardiac arrest
- 12 Intervention: Any CPR ratio delivered by EMS
- Comparators: Eligible comparator groups include a CPR ratio different from the one in
- 14 the intervention arm delivered by EMS. Comparator groups that received no CPR or
- 15 compared manual CPR with mechanical CPR were excluded from the review. Studies
- 16 including automated CPR or any use of mechanical devices will only be included if
- 17 administered to all treatment arms.
- 18 Outcomes:
- 19 Critical: Favorable neurological survival (as measured by CPC or mRS) at
- 20 discharge or 30 days and at any time interval after 30 days

1	- Important: Survival to discharge or 30 days, survival to hospital admission,
2	survival to any time interval after discharge or 30-day survival, ROSC, quality of
3	life as measured by any indicator or score.
4	• Study design: In addition to standard criteria, observational studies that reported only
5	unadjusted data were excluded.
6	• Time frame: Because the search terms were revised, the search included all years to
7	October 21, 2024.
8	Consensus on Science
9	Eight studies examined the impact of the 2005 resuscitation guidelines, in which changes
10	to compression-to-ventilation (CV) ratios were made in combination with other bundled
11	interventions. ^{119,125-131} The studies consisted of 7 retrospective cohort studies ^{119,125-130} , and one
12	prospective study. ¹³¹ No study included children. Evidence was very low-certainty in all cases.
13	For the critical outcome of favorable neurological survival at discharge or 30 days, we
14	identified 2 cohort studies. ^{126,131} In 1 cohort study of 3960 initially nonshockable OHCA, ¹²⁶
15	implementation of the 2005 resuscitation guidelines (including a CV ratio of 30:2) was
16	associated with an improvement in neurologically favorable survival at hospital discharge (CPC
17	score 1–2) compared with a prior period using a CV ratio of 15:2 (odds ratio [OR], 1.56 [95%
18	CI, 1.11, 2.18]). In another cohort study of 522 initially shockable OHCA, ¹³¹ being treated under
19	the 2005 guidelines was associated with no change in neurologically favorable survival at 30
20	days (CPC score 1–2) compared with being treated with a CV ratio of 15:2 (OR, 0.50 [95% CI,
21	0.20, 1.25]).
22	For the critical outcome of survival to hospital discharge or 30-day survival, we identified

6 cohort studies.^{119,125-128,130} Because of heterogeneity, no meta-analysis was performed.

1	• CV ratio 30:2 versus 15:2: In 3 studies of OHCA with all rhythms, a CV ratio of 30:2
2	compared with 15:2 was associated with higher odds of survival in 2 studies (adjusted
3	OR[aOR], 1.8; [95% CI, 1.2, 2.7] ¹²⁸ ; aOR, 2.5 [95% CI, 1.4, 4.6] ¹²⁷) but not in the third
4	study (aOR, 1.42 [95% CI, 0.79, 2.57]). ¹²⁵ For OHCA with initially shockable rhythm, 1
5	study reported higher odds of survival to hospital discharge with a CV ratio of 30:2
6	compared with 15:2 (aOR, 1.62 [95% CI, 1.33–1.98]), which became nonsignificant after
7	adjustment for the temporal trend (aOR, 1.07 [95% CI, 0.71, 1.62]). ¹³⁰ In OHCA patients
8	with initial nonshockable rhythm, a CV ratio of 30:2 compared with 15:2 was associated
9	with higher odds of survival in one study (aOR 1.53 [95% CI, 1.14, 2.05]), ¹²⁶ but not in
10	the other (aOR 1.19 [95% CI, 0.82, 1.73]). ¹³⁰
11	• CV ratio 50:2 versus 5:1: A before-after study of 200 bystander witnessed OHCA with
12	initial shockable rhythms reported an improvement in survival to hospital discharge
13	following the implementation of a bundled change in resuscitation practice consisting of
14	a CV ratio of 50:2 compared with 5:1 (aOR, 2.17 [95% CI, 1.26–3.73]). ¹¹⁹
15	For the critical outcome of ROSC, one cohort study of 1243 OHCA patients found no
16	change in the risk-adjusted odds of ROSC with a CV ratio of 30:2 compared with 15:2
17	(OR, 1.31 [95% CI, 0.99, 1.73]). ¹²⁹
18	Treatment Recommendations (2025, Unchanged From 2017)
19	We suggest a compression-ventilation ratio of 30:2 compared with any other
20	compression-ventilation ratio in adult patients in cardiac arrest (weak recommendation, very
21	low-certainty evidence).

22 Justification and Evidence-to-Decision Framework Highlights

23 The complete evidence-to-decision table is provided in Appendix A.

1	In making this recommendation, the task force placed a high priority on consistency with
2	our prior treatment recommendations and the findings identified in this review, which suggest
3	that the bundle of care, which included changing to a CV ratio of 30:2, resulted in more lives
4	being saved. The task force also considered the following:
5	• All studies included in this review suffered from serious indirectness, where a change to
6	CV ratio was delivered or introduced as part of a bundle of care that included other
7	changes, such as increases in the duration of CPR cycles, removal of stacked shocks,
8	removal of postshock rhythm checks and fewer interruptions to chest compressions. It is
9	possible that the benefits observed in these studies are not related to a change in CV ratio.
10	• Future studies and reviews should focus on the benefit of higher CV ratios, compared
11	with the current recommendation of 30:2.
12	Knowledge Gaps
13	• The impact of different ratios without any other concurrent changes in practice
14	• The benefit of higher CV ratios compared with 30:2
15	• The ability of CPR providers to deliver 2 effective ventilations during the short pause in
16	chest compressions during CPR
17	• Examination of the ratio-dependent tidal volume required to maintain oxygenation
18	Duration of CPR Cycles (BLS 2212: SysRev 2025)
19	Rationale for Review
20	This topic was last reviewed in detail ¹³² for the 2020 CoSTR, ^{37,38} and was prioritized for
21	a detailed review since only EvUps had been done since 2020. The full CoSTR can be found on
22	the ILCOR website. ¹³³ Because there was no intent to publish this review outside of the 2025
23	CoSTR, PROSPERO registration was not completed.

1	Population, Intervention, Comparator, Outcome, and Time Frame
2	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
3	cardiac arrest.
4	• Intervention: Pausing chest compressions at another interval
5	• Comparators: Pausing chest compressions every 2 minutes to assess the cardiac rhythm
6	• Outcomes:
7	- Critical: Survival with favorable neurological outcome at hospital discharge or 30
8	days; survival at hospital discharge or 30 days
9	- Important: ROSC; coronary perfusion pressure, cardiac output
10	• Time frame: September 1, 2019, to September 22, 2024
11	Consensus on Science

- 12 No new clinical studies have been identified since the 2020 ILCOR SysRev.^{37,38} The
- 13 existing evidence consists of 2 RCTs (Table 4).^{134,135}

14 **Table 4. Evidence Comparing Duration of CPR Cycles**

Study (design)	Participants, intervention	Outcomes: RR (95% CI)	Certainty of evidence
3 minutes Wik 2003 ¹³⁴ (RCT)	200 adult OHCAs 3 minutes (intervention): immediate defibrillation (up to 3 stacked shocks) for VF/VT followed by 3 minutes of CPR regardless of postshock rhythm 1 minute (comparator): immediate defibrillation (up to 3 stacked shocks) for VF/VT followed by 1 minute of CPR for patients in refractory VF/VT, and 3 minutes of CPR for patients that were in nonshockable rhythms following initial 1– 3 shocks	Compared with 1 minute, there was no difference for 3-minute duration: Survival to hospital discharge with favorable neurological outcome(absolute RR, 1.68, 95% CI, 0.85–3.32; p=0.13) Survival to hospital discharge(absolute RR, 1.52, 95% CI, 0.83–2.77; p=0.17) ROSC (absolute RR, 1.22 (95% CI, 0.92–1.50; p=0.16)	Very low (downgraded for risk of bias and imprecision)
1 minute versus 2 minutes			
Baker 2008 ¹³⁵	202 adult OHCAs 1 minute (intervention): stacked shocks (up to 3 in refractory VF/VT), 15:2 CPR	Compared with 2 minutes, there was no difference for 1-minute duration:	Very low (downgraded for

Study (design)	Participants, intervention	Outcomes: RR (95% CI)	Certainty of evidence
	and 1 minute CPR cycles between	Survival to hospital discharge	risk of bias and
	defibrillation	(RR, 0.49, 95% CI, 0.23–1.06;	imprecision)
	2 minutes (comparator): single shock, 30:2	p=0.06)	
	CPR and 2minute CPR cycles between	ROSC (RR, 0.95,95% CI: 0.73–	
	defibrillation	1.24; p=0.71)	

1 CPR indicates cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; ROSC, return of spontaneous 2 circulation; RR, relative risk, VF/VT, ventricular fibrillation/ventricular tachycardia.

enculation, KK, relative fisk, v17 v 1, ventricular normation/ventricular tacity

3 Treatment Recommendations (2025, Unchanged From 2015)

4 We suggest pausing chest compressions every 2 minutes to assess the cardiac rhythm (weak

5 recommendation, low-certainty evidence).

6 Justification and Evidence-to-Decision Framework Highlights

- 7 The complete evidence-to-decision table is included in Appendix A.
- 8 These included trials were designed to address the question of CPR or defibrillation first
- 9 and provide only indirect evidence for different CPR cycle durations.
- 10 In making the suggestion to pause chest compressions every 2 minutes to assess cardiac

11 rhythm, we placed a high value on being consistent with previous recommendations in the

12 absence of any convincing evidence indicating potential benefit from changing to CPR cycles of

13 a different duration. The BLS Task Force acknowledges that every guideline change comes with

14 significant risk and costs.

15 Knowledge Gaps

- Whether the optimal CPR interval between rhythm analyses differs between initial
- 17 cardiac rhythms
- 18 The impact of no-flow and low-flow time
- 19 The impact of stopping CPR on the overriding goal of minimizing interruptions in chest
- 20 compressions

1	• The relationship between rescuer fatigue, chest compression quality, and the optimal	
2	interval for chest compression cycles	
3	EMS Continuous-Chest Compression CPR (BLS 2221: SysRev 2025)	
4	Rationale for Review	
5	The previous SysRev ¹³ and existing ILCOR treatment recommendation were first	
6	published in 2017. ^{14,15} This topic was prioritized for a detailed review because it had not been	
7	reviewed since 2017. The SysRev ¹⁶ was registered on PROSPERO (CRD42024559318), and the	
8	full CoSTR can be found on the ILCOR website. ¹³⁶	
9	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame	
10	• Population: Adults and children with out-of-hospital with cardiac arrest	
11	• Intervention: Continuous chest compressions (CCC) with or without ventilations delivered by	
12	EMS	
13	• Comparators: <i>Standard CPR</i> , defined as any CV ratio delivered by EMS. Comparator	
14	groups that receive no CPR or compared manual CPR with mechanical CPR were	
15	excluded from the review. Studies including automated CPR or any use of mechanical	
16	devices were only included if administered to all treatment arms.	
17	• Outcomes:	
18	- Critical: Favorable neurological survival (as measured by CPC or mRS) at	
19	discharge or 30 days and at any time interval after 30 days.	
20	- Important: Survival to discharge or 30 days, survival to hospital admission,	
21	survival to any time interval after discharge or 30 days survival, ROSC, quality of	
22	life as measured by any indicator or score.	
23	• Study design: In addition to standard criteria, observational studies that reported only	
24	unadjusted data were excluded.	

1 Time frame: Because the search terms were revised, the search included all years to •

2 October 2024.

3 **Consensus on Science**

- We identified 1 cluster crossover RCT¹³⁷ and 3 cohort studies, ¹³⁸⁻¹⁴⁰ including 2 post hoc 4
- 5 analyses of the earlier cluster RCT, providing low to moderate-certainty of evidence
- (downgraded for indirectness and risk of bias). The evidence is summarized in Table 5. 6

7 Table 5. The Evidence Comparing EMS Chest Compression–Only CPR With Conventional 8 **CPR**

Outcome (certainty of evidence)	Studies and patients	Results
Favorable neurological function (moderate)	1 adult cluster RCT ¹³⁷ randomized to either CCC with asynchronous PPV or standard CPR with a CV ratio of 30:2	No difference compared with 30:2
Survival to hospital	1 adult cluster RCT ¹³⁷	No difference
discharge or 30 days (low to moderate)	3 observational studies: 1 compared minimally interrupted cardiac resuscitation with C-CPR (including a CV ratio of 15:2, stacked shocks, and post-shock rhythm checks) ¹³⁸ ; 1 post hoc analysis of the Nichol cluster RCT ¹³⁷ restricted to sites in British Colombia ¹³⁹ ; 1 secondary analysis of patients enrolled into the ROC registry or either the ROC CCC, ALPS, or PART clinical trials were classified CCC with asynchronous ventilations or C-CPR (30:2) ¹⁴⁰	Minimally interrupted cardiac resuscitation was associated with improved survival to hospital discharge (aOR, 3.0 [95% CI, 1.1–8.9]). ¹³⁸ A post hoc analysis of the Nichol cluster RCT ¹³⁷ reported no significant difference in survival to hospital discharge. ¹³⁹ The secondary analysis showed that CCC was associated with improved survival to hospital discharge when compared with standard CPR (aOR, 1.20 [95% CI, 1.04, 1.38]). Further analysis showed when there was adherence to the intended strategy, CCC had significantly lower survival (aOR, 0.72 [95% CI, 0.64, 0.81), while in patients with the intended strategy, 30:2 had higher survival (aOR, 1.05 [95% CI, 0.90, 1.22]). ¹⁴⁰
ROSC (low to moderate)	1 adult cluster RCT ¹³⁷	No difference compared with 30:2
	1 cohort study compared minimally interrupted cardiac resuscitation C- CPR (including a CV ratio of 15:2, stacked shocks, and postshock rhythm checks). ¹³⁸	No difference compared with 15:2

9 ALPS indicates Amiodarone, Lidocaine, or Placebo in Out-of-Hospital Cardiac Arrest; aOR, adjust odds ratio; CCC,

- 10 continuous chest compressions; C-CPR, conventional CPR; CCO-CPR, chest compression-only CPR; CPR,
- 11 cardiopulmonary resuscitation; CV ratio, compression-to-ventilation ratio; PART, Pragmatic Airway Resuscitation
- 12 13 Trial; PPV, positive-pressure ventilation; RCT, randomized control trial; ROC, Resuscitation Outcomes

Consortium; ROSC, return of spontaneous circulation.

1

Prior Treatment Recommendations (2019)

2	We recommend that EMS providers perform CPR with 30 compressions to 2 breaths
3	(30:2 ratio) or continuous chest compressions with positive-pressure ventilation delivered
4	without pausing chest compressions until a tracheal tube or supraglottic device has been placed
5	(strong recommendation, high-certainty evidence).
6	We suggest that, when EMS systems have adopted minimally interrupted cardiac
7	resuscitation, this strategy is a reasonable alternative to conventional CPR for witnessed
8	shockable OHCA (weak recommendation, very low-certainty evidence).
9	Treatment Recommendations (2025)
10	In adults in cardiac arrest, we recommend that EMS providers perform CPR with 30
11	compressions to 2 ventilations or continuous chest compressions with positive-pressure
12	ventilations delivered without pausing chest compressions until a tracheal tube or supraglottic
13	airway device has been placed (strong recommendation, moderate-certainty evidence)
14	Justification and Evidence-to-Decision Framework Highlights
15	The complete evidence-to-decision table is provided in Appendix A.
16	The task force noted no high-certainty evidence to support the superiority of either CCC
17	or standard CPR for patient outcomes in OHCA and placed a high value on the importance of
18	providing high-quality chest compressions and simplifying resuscitation logistics for EMS
19	providers. A substudy of the included cluster crossover RCT ¹³⁷ suggests that a CV ratio of 30:2
20	may be harder to achieve in practice, but when performed correctly may be associated with
21	improved outcomes compared to a CV ratio of 30:2 with asynchronous ventilations. ¹⁴¹
22	The task force removed the 2017 recommendation supporting systems that have
23	implemented minimally interrupted cardiac resuscitation (ie, 200 compressions without
24	ventilations) for witnessed shockable OHCA. This decision was made because this former

recommendation was supported by a single retrospective study reporting adjusted estimates for
the intervention,¹³⁸ with a serious risk of bias from uncontrolled confounding because the study
implemented a bundle including other resuscitation practices. The task force also considered the
following:

- Interruptions in chest compressions have been associated with poorer clinical outcomes
 in observational studies.¹⁴² Pauses for ventilations are a significant source of interruptions
 in chest compressions and may negatively impact coronary and aortic blood flow.¹⁴³
 Asynchronous positive-pressure ventilation (PPV) (continuous chest compressions with
 PPV delivered without pausing chest compressions) may achieve similar oxygenation
 without compromising chest compression quality.
- Although there was relative homogeneity in the CCC strategies, there was heterogeneity
 in the use of ventilation strategies, including both asynchronous PPV and passive
 oxygenation (delivering oxygen during compressions without providing ventilation). The
 adequacy of ventilation was not assessed in any studies, although measures of chest
- 15 compression quality (eg, chest compression fraction) were reported.

16 Knowledge Gaps

- 17 The effect of delaying PPV during CPR
- 18 The impact of different elements of minimally interrupted cardiac resuscitation
- 19 (compressions, ventilation, delayed defibrillation) on patient outcomes
- The impact of adherence to CCC or a CV ratio of 30:2 on patient outcomes

21 In-Hospital CCC CPR (BLS 2222: SysRev 2025)

22 Rationale for Review

- 23 This was a nodal review with BLS and the PLS Task Forces. The previous SysRev¹³ and
- 24 existing ILCOR treatment recommendation was first published in 2017.^{14,15} This topic was

prioritized for a detailed review as it had not been reviewed since 2017. The SysRev was
 registered on PROSPERO (CRD42024559318), and the full CoSTR can be found on the ILCOR
 website.¹⁴⁴

4	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
5	• Population: Adults and children in-hospital with cardiac arrest
6	• Intervention: CCC with or without ventilations delivered by in-hospital providers
7	• Comparators: <i>Standard CPR</i> , defined as any CV ratio delivered by in-hospital providers.
8	Comparator groups that received no CPR or compared manual CPR with mechanical
9	CPR were excluded from the review. Studies including automated CPR or any use of
10	mechanical devices were only included if administered to all treatment arms.
11	• Outcomes:
12	- Critical: Favourable neurological survival (as measured by CPC or mRS) at
13	discharge or 30 days and at any time interval after 30 days
14	- Important: Survival to discharge or 30 days, survival to hospital admission,
15	survival to any time interval after discharge or 30 days survival, ROSC, quality of
16	life as measured by any indicator or score
17	• Study design: In addition to standard criteria, observational studies that reported only
18	unadjusted data were also excluded.
19	• Time frame: Because the search terms were revised, the search included all years to
20	October 21, 2024.
21	Consensus on Science
22	No new studies were identified. One single-center cohort study included in the previous
23	review provided very low-certainty evidence (downgraded for risk of bias and very serious
24	imprecision). ¹⁴⁵ The study evaluated the effect of continuous mechanical chest compressions in
	© 2025 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on

Resuscitation.
patients admitted to an emergency department following OHCA. PPV without interruption of
 chest compressions after tracheal intubation was compared with interruption of chest
 compressions for one ventilation after every fifth chest compression (a CV ratio of 5:1) among
 patients admitted to a hospital emergency department after OHCA.

No adjusted data were reported for favorable neurological survival at discharge or 30
days. For the critical outcome of survival, patients who received tracheal intubation with PPV
during continuous compressions had increased adjusted survival to hospital discharge (aOR, 2.43
[95% CI, 1.15–5.12]) and higher odds of ROSC (aOR, 1.62 [95% CI, 1.07–2.43]) when
compared with those who received mechanical chest compressions interrupted for ventilations at

10 a ratio of 5 compressions to 1 ventilation.

11 Prior Treatment Recommendation (2019)

12 Whenever tracheal intubation or a supraglottic airway is achieved during in-hospital 13 CPR, we suggest that providers perform continuous compressions with PPV delivered without 14 pausing chest compressions (weak recommendation, very low–quality evidence).

15 Treatment Recommendations (2025)

In-hospital providers should perform CPR with 30 compressions to 2 ventilations or continuous chest compressions with positive pressure ventilations delivered without pausing chest compressions in adults in cardiac arrest (good practice statement).

19 Justification and Evidence-to-Decision Framework Highlights

- 20 The complete evidence-to-decision table is provided in Appendix A.
- 21 In changing the recommendation to a good practice statement, the task force
- 22 acknowledges the lack of evidence of this topic. The good practice statement for practice before
- an advanced airway is placed was added to fill the treatment gap and provide guidance for
- 24 immediate CPR. The task force also considered the following:

1	٠	Interruptions in chest compressions have been associated with worse clinical outcomes in
2		observational studies. ¹⁴² Pauses for ventilations are a significant source of interruptions in
3		chest compressions and may negatively impact coronary and aortic blood flow. ¹⁴³ PPV
4		during chest compressions may achieve similar oxygenation without compromising chest
5		compression quality.
6	•	The only included study was conducted with a before-and-after design that, although
7		adjusted for demographic and cardiac arrest characteristics, did not account for potential
8		temporal differences in resuscitation efficiencies between study periods.
9	•	Data on the same question in EMS found no high-quality evidence to support the
10		superiority of either CCC or standard CPR for patient outcomes in OHCA. The task force
11		also placed high value on providing consistent recommendations for EMS and in-hospital
12		providers.
13	•	The task force also placed a relatively high value on providing high-quality chest
14		compressions and simplifying resuscitation logistics for providers.
15	•	Evidence suggests that a CV ratio of 30:2 may be much harder to achieve in practice and
16		could ultimately result in a higher degree of nonadherence compared with CCC. ¹⁴⁰
17	Know	ledge Gaps
18	•	Effectiveness of CCC with or without ventilations compared with standard CPR, when
19		delivered by in-hospital professionals
20	•	The effect of delaying PPV during CPR
21	•	The effectiveness of passive oxygenation during resuscitation
22	•	The impact of adherence to chest compression–only CPR or a CV ratio of 30:2 on patient
23		outcomes

1 BLS COMPONENTS—COMPRESSIONS

2 Hand Position During Compressions (BLS 2502: SysRev 2025)

3 Rationale for Review

4	Hand positioning during compressions was last reviewed in detail for the 2020
5	CoSTR. ^{37,38} Since 2020, EvUps have identified evidence only from imaging studies. Because
6	these studies contribute new indirect evidence, this topic was prioritized for review. The full
7	CoSTR can be found on the ILCOR website. ¹⁴⁶ Because there was no intent to publish this
8	review outside of the 2025 CoSTR, PROSPERO registration was not completed.
9	Population, Intervention, Comparator, Outcome, and Time Frame
10	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
11	cardiac arrest
12	• Intervention: Any other location for chest compressions
13	• Comparators: Delivery of chest compressions on the lower half of the sternum
14	Outcomes: Any clinical outcome
15	- Critical: Survival to hospital discharge with good neurological outcome; survival
16	to hospital discharge
17	- Important: ROSC; blood pressure; coronary perfusion pressure; end-tidal carbon
18	dioxide
19	• Time frame: October 1, 2019, to September 26, 2024
20	Consensus on Science
21	No studies reported the critical outcomes of favorable neurologic outcome, survival, or
22	ROSC. No new clinical studies have been identified since the 2020 ILCOR SysRev. ^{37,38} The
23	existing evidence consists of 3 very low-certainty studies reporting on physiologic endpoints. ¹⁴⁷⁻

1	¹⁴⁹ One crossover study in 17 adults with prolonged resuscitation from nontraumatic cardiac
2	arrest observed improved peak arterial pressure during compressions and higher end-tidal carbon
3	dioxide when compressions were performed on the lower third of the sternum compared with the
4	center of the chest, whereas arterial pressure during compression recoil, peak right atrial
5	pressure, and coronary perfusion pressure did not differ. ¹⁴⁹ A second crossover study in 30 adults
6	observed no association between end-tidal carbon dioxide values and hand placement. ¹⁴⁸ A
7	further crossover study in 10 children observed higher peak systolic pressure and higher mean
8	arterial blood pressure when compressions were performed over the lower third of the sternum
9	compared with the middle of the sternum. ¹⁴⁷
10	Treatment Recommendations (2025, Unchanged From 2015)
11	We suggest performing chest compressions on the lower half of the sternum on adults in
12	cardiac arrest (weak recommendation, very low-certainty evidence).
13	Justification and Evidence-to-Decision Framework Highlights
14	The complete evidence-to-decision table is provided in Appendix A.
15	No studies evaluated the effect of a specific hand position on short- or long-term survival
16	after cardiac arrest, and only physiologic surrogate outcomes were evaluated.
17	Imaging studies were excluded from the current SysRev because they do not report
18	clinical outcomes for cardiac arrest patients. However, they provide valuable indirect
19	information. Recent studies indicate that, in most adults and children, the maximal ventricular
20	cross-sectional area is located beneath the lower third of the sternum or the xiphisternal junction.
21	Additionally, the ascending aorta and left ventricular outflow tract are positioned beneath the
22	center of the chest. ¹⁵⁰⁻¹⁵⁶ The studies also highlight significant anatomical differences between
23	individuals based on factors such as aga, body mass index, congenital cardiac disease, and

pregnancy. Consequently, no single hand-placement strategy may be universally optimal for
 chest compressions across all populations.^{153,155,157,158}

In reaffirming the recommendation to perform chest compressions on the lower half of the sternum, we prioritized consistency with previous guidelines given the lack of compelling clinical evidence necessitating a change in approach.

6 Knowledge Gaps

7 • The effects of different hand positions during CPR on patient outcomes

How to determine the optimal hand placement or compression point for individuals in
 cardiac arrest, particularly by leveraging physiologic feedback or incorporating insights
 from prior imaging.

11 Head-Up CPR (BLS 2503: SysRev 2025)

12 Rationale for Review

13 This was a nodal review with BLS and the Advanced Life Support (ALS) Task Forces. 14 The first SysRev with treatment recommendations for head-up CPR was published in the 2021 15 CoSTR.^{159,160} Since 2021, the topic has been reviewed in EvUps, which identified new 16 observational studies, and the SysRev was therefore updated for 2025. The SysRev was 17 registered on PROSPERO (CRD42024541714), the full details of this review can be found in the SysRev,¹⁶¹ and the full CoSTR can be found on the ILCOR website.¹⁶² 18 19 Population, Intervention, Comparator, Outcome, and Time Frame 20 Population: Adults and children in any setting (in-hospital or out-of-hospital) with • 21 cardiac arrest 22 Intervention: Head-up CPR or head-up CPR bundle (eg, head-up position, active

23 compression/decompression, and an impedance threshold device).

- Comparators: Standard or chest compression–only CPR in supine position
- 2 Outcomes:

3

- Critical outcomes: Survival to hospital discharge with good neurological outcome,
- 4 survival to hospital discharge, event survival, survival to 30 days, survival to 30
- 5 days with good neurological outcome
- 6 Important outcome: ROSC
- 7 Time frame: July 22, 2021, to July 19, 2024
- 8 Consensus on Science
- 9 Two new observational studies were identified, adding to the single study identified in
- 10 2021.¹⁶³⁻¹⁶⁵ All studies were from the same research group. Details of study designs and key
- 11 findings are presented in Table 6. Evidence was deemed very low–certainty for all outcomes
- 12 because of serious risk of bias, inconsistency, and imprecision.

Study	Design (time frame), participants, intervention, comparator	Outcomes	Certainty of evidence
Pepe 2019 ¹⁶⁵	Before-after study, 2014–2017:2322 adult OHCAs (1356 intervention)Intervention: Head-up CPR bundle thatincluded mechanical CPR and ITD; oxygenbut deferred PPV for several minutes; a pit-crew approach for rapid placement of themechanical CPR device; and subsequentplacement of patient in a reverseTrendelenburg position ($\approx 20^{\circ}$)Comparator: Mechanical CPR and ITD(data from same EMS)	Survival to hospital discharge with favorable neurological outcome: Unadjusted 35% to 40% intact neurologic status in both groups (exact data and loss to follow-up not provided) Event survival: Unadjusted 17.9% (n=144/806) versus 34.2% (n=464/1356), p<0.001	All outcomes: very low– certainty evidence (downgraded for risk of bias, inconsistency, and imprecision)
Moore 2022 ¹⁶⁴	Prospective observational: Automated Controlled Elevation CPR Registry, 2019– 2020, 5423 adult OHCAs (227 intervention) Intervention: Automated controlled head and thorax patient positioning device. Immediate elevation of head and mid thorax to 12 cm and 8 cm, respectively, with conventional CPR for 2 minutes; followed by a gradual elevation of patient's head and torso during CPR over an additional 2-	After propensity matching: Survival to hospital discharge with favorable neurological outcome:5.9% (13/222) versus 4.1% (35/860); OR, 1.47 (95% CI, 0.76–2.82) 9.5% (21/222) versus 6.7% (58/860); OR, 1.44 (Survival to hospital discharge: 95% CI, 0.86–2.44) ROSC: 33% (74/222) versus 33% (282/860); OR, 1.02 (95% CI, 0.75–1.49)	

13 **Table 6. Key Design Elements and Findings of Head-Up CPR Studies**

Study	Design (time frame), participants, intervention, comparator	Outcomes	Certainty of evidence
- De liter	minute period to a final head and thorax elevation of 22 cm and 9 cm, respectively. Comparator: Conventional CPR with supine position (data from 3 RCTs conducted between 2006–2015 ¹⁶⁶⁻¹⁶⁸)		
Bashista 2024 ¹⁶³	Prospective observational: Automated Head/Thorax-UP Positioning Registry (2019–2021); 2232 adult nonshockable OHCAs (380 intervention) Intervention: Automated controlled head and thorax patient positioning device, immediate elevation of head and mid thorax to 12 cm and 8 cm, respectively, with conventional CPR for 2 minutes; followed by a gradual elevation of patient's head and torso during CPR over an additional 2- minute period to a final head and thorax elevation of 22 cm and 9 cm, respectively. Comparator: Conventional CPR with supine position (data from 2 RCTs conducted between 2006–2009 ^{166,168})	After propensity matching: Survival to hospital discharge with favorable neurological outcome: 4.2% (15/353) versus 1.1% (4/353); OR, 3.87 (95% CI, 1.27–11.78) Survival to hospital discharge: 7.6% (27/353) versus 2.8% (10/353); OR, 2.84 (95% CI, 1.35–5.96) ROSC: 33% (118/353) versus 29% (101/353); OR, 1.25 (95% CI, 0.91–1.72)	

1 CPR indicates cardiopulmonary resuscitation; EMS, emergency medical services; ITD, impedance threshold device;

OHCA, out-of-hospital cardiac arrest; OR, odds ratio; PPV, positive-pressure ventilation; ROSC, return of
 spontaneous circulation; RCT, randomized controlled trial

4 Prior Treatment Recommendations (2021)

- 5 We suggest against the routine use of head-up CPR during CPR (weak recommendation,
- 6 very low–certainty evidence).
- 7 We suggest that the usefulness of head-up CPR during CPR be assessed in clinical trials

8 or research initiatives (weak recommendation, very low–certainty evidence).

- 9 Treatment Recommendations (2025)
- 10 We suggest against the use of head-up CPR or head-up CPR bundle during CPR except
- 11 in the setting of clinical trials or research initiatives (weak recommendation, very low–certainty
- 12 evidence).

13 Justification and Evidence-to-Decision Framework Highlights

14 The complete evidence-to-decision table is provided in Appendix A.

Bray 43

1	In making this recommendation, the BLS Task Force recognized that the currently
2	available evidence remains limited, highlighted by the absence of RCTs or observational studies
3	with adequate comparisons. The comparator groups used in all 3 available studies are
4	problematic (eg, earlier time frame), and some outcomes are reported without adjustment for
5	known confounders or temporal trends. The implementation of the existing head-up CPR
6	bundles requires the purchase of expensive equipment, which includes an automated
7	head/thorax-up positioning device, a mechanical CPR device, and an impedance threshold
8	device, as well as considerable training.
9	Although the intervention may sound simple, the included studies demonstrate the
10	complexities. We did not find clinical evidence supporting a particular bundle approach or
11	indicating that the sole use of head-up elevation is superior to other bundles without it. There is
12	an indication that faster deployment of head-up CPR is associated with better neurological
13	outcomes, ¹⁶⁴ but this requires further study.
14	Knowledge Gaps
15	• High-quality evidence of the effect of head-up CPR or head-up CPR bundle is required.
16	• The optimal approach (eg, the angle and timing of head elevation) when head-up CPR is
17	used
18	Minimizing Pauses in Compressions (BLS 2504: SysRev 2022, EvUp 2025)
19	A 2022 SysRev and 2025 EvUp examined the evidence on passive ventilation techniques.
20	The details of the 2022 SysRev review can be found in the 2022 CoSTR summary ^{169,170} and on
21	the ILCOR website. ¹⁷¹ The 2025 EvUp is provided in Appendix B.
22	Population, Intervention, Comparator, Outcome, and Time Frame
23	• Population: Adults in cardiac arrest in any setting

1	• Intervention: Minimizing pauses in chest compressions (higher CPR or chest
2	compression fraction or shorter perishock pauses compared with control)
3	• Comparator: Standard CPR (lower CPR fraction or longer perishock pauses compared
4	with intervention)
5	• Outcomes:
6	- Critical: Survival to hospital discharge with good neurological outcome; survival
7	to hospital discharge
8	- Important: ROSC
9	• Time frame: June 1, 2021, to April 14, 2024
10	Summary of Evidence
11	The EvUp found 1 new study ¹⁷² directly relevant to the PICOST and several studies with
12	meaningful data on interruptions in cardiac arrest care. ^{140,172-175} However, these later studies were
13	excluded because they did not address the prespecified outcomes of interest. This suggests a
14	SysRev might be warranted in the future after revising the PICOST question.
15	Treatment Recommendations (2022)
16	We suggest that CPR fraction and perishock pauses in clinical practice be monitored as
17	part of a comprehensive quality improvement program for cardiac arrest designed to ensure high-
18	quality CPR delivery and resuscitation care across resuscitation systems (weak recommendation,
19	very low-certainty evidence).
20	We suggest that preshock and postshock pauses in chest compressions be as short as
21	possible (weak recommendation, very low-certainty evidence).
22	We suggest that the CPR fraction during cardiac arrest (CPR time devoted to
23	compressions) should be as high as possible and be at least 60% (weak recommendation, very
24	low-certainty evidence).

1	Optimal Surface for Performing CPR (BLS 2510: SysRev 2024)
2	A 2024 SysRev updated the 2019 review ¹⁷⁶ on the optimal surface for performing CPR.
3	The full details of this review can be found in the SysRev, ¹⁷⁷ the 2024 CoSTR summary, ^{40,41} and
4	on the ILCOR website. ¹⁷⁸
5	Population, Intervention, Comparator, Outcome, and Time Frame
6	• Population: Adults or children in cardiac arrest (OHCA and in-hospital cardiac arrest)
7	• Intervention: The performance of CPR using a hard surface (eg, backboard, floor, or
8	deflatable or specialist mattress)
9	• Comparators: The performance of CPR on a regular mattress or other soft surface
10	• Outcomes:
11	- Critical: Survival with a favorable neurological outcome at hospital discharge/30
12	days; survival at hospital discharge/30 days
13	- Important: Event survival; ROSC; CPR quality (eg, compression depth,
14	compression rate, compression fraction)
15	• Time frame: September 17, 2019, to February 5, 2024.
16	Treatment Recommendations (2024)
17	We suggest performing chest compressions on a firm surface when possible (weak
18	recommendation, very low-certainty evidence).
19	During in-hospital cardiac arrest, we suggest, where a bed has a CPR mode, which
20	increases mattress stiffness, it should be activated (weak recommendation, very low-certainty of
21	evidence).
22	During in-hospital cardiac arrest, we suggest against moving a patient from a bed to floor
23	to improve chest compression depth (weak recommendation, very low-certainty of evidence).

1	During in-hospital cardiac arrest, we suggest in favor of either a backboard or no-
2	backboard strategy, to improve chest compression depth (conditional recommendation, very
3	low-certainty of evidence).
4	Feedback for CPR Quality (BLS 2511: ScopRev 2024)
5	A 2024 ScopRev examined the wider literature on feedback for CPR quality during
6	resuscitation. The details of this review can be found in the ScopRev, ¹⁷⁹ the 2024 CoSTR
7	summary, ^{40,41} and on the ILCOR website. ¹⁸⁰
8	Population, Intervention, Comparator, Outcome, and Time Frame
9	• Population: Adults and children (excluding neonates) who are in cardiac arrest in any
10	setting who are resuscitated by health professionals responding in a professional capacity
11	• Intervention: Real-time feedback and prompt devices regarding the mechanics of CPR
12	quality (eg, rate and depth of compressions and/or ventilations)
13	• Comparators: No feedback or prompt devices or alternative devices
14	• Outcomes: Any outcomes or measure of CPR quality
15	• Time frame: All years to July 18, 2023. A grey literature search was performed in the
16	Google search engine in addition to the standard databases.
17	Treatment Recommendations (2020)
18	We suggest the use of real-time audiovisual feedback and prompt devices during CPR in
19	clinical practice as part of a comprehensive quality improvement program for cardiac arrest
20	designed to ensure high-quality CPR delivery and resuscitation care across resuscitation systems
21	(weak recommendation, very low-certainty evidence).
22	We suggest against the use of real-time audiovisual feedback and prompt devices in
23	isolation (ie, not part of a comprehensive quality improvement program) (weak recommendation,
24	very low-certainty evidence).

1 BLS COMPONENTS—VENTILATION

2	Passive Ventilation Techniques (BLS 2403: SysRev 2022, EvUp 2025)
3	A 2022 SysRev and 2025 EvUp examined the evidence on passive ventilation techniques.
4	The details of this review can be found in the 2022 CoSTR summary ^{169,170} and on the ILCOR
5	website. ¹⁸¹ The 2025 EvUp is provided in Appendix B.
6	Population, Intervention, Comparator, Outcome, and Time Frame
7	• Population: Adults and children with presumed cardiac arrest in any setting
8	• Intervention: Any passive ventilation technique (eg, positioning the body, opening the
9	airway, passive oxygen administration, Boussignac tube, constant flow insufflation of
10	oxygen) in addition to chest compressions
11	Comparator: Standard CPR
12	• Outcomes:
13	- Critical: Survival to hospital discharge with good neurological outcome; survival
14	to hospital discharge
15	– Important: ROSC
16	• Time frame: October 16, 2021, to July 5, 2024
17	Summary of Evidence
18	No new studies were identified, so a new SysRev is not warranted.
19	Treatment Recommendations (2022)
20	We suggest against the routine use of passive ventilation techniques during conventional
21	CPR (weak recommendation, very low-certainty evidence).

1 Real-Time Ventilation Quality Feedback Devices (BLS 2402: ScopRev 2025)

2 Rationale for Review

3	A growing body of evidence suggests ventilation parameters during resuscitation often
4	fall outside guideline recommendations. ^{182,183} This review was prioritized because new devices
5	are now available to help BLS providers monitor and improve ventilation in real-time.
6	Ventilation parameters were not addressed in detail in our recent review of real-time feedback. ¹⁷⁹
7	The full details of this review can be found in the ScopRev ¹⁸⁴ and on the ILCOR website. ¹⁸⁵
8	Population, Intervention, Comparator, Outcome, Study Design, and Time Frame
9	• Population: Adults and children in any setting (out-of-hospital or in-hospital) in cardiac
10	arrest
11	• Intervention: Real-time ventilation quality feedback (eg, tidal volume, adequate
12	ventilation, mask leak, ventilation rate)
13	Comparators: No real-time ventilation feedback
14	Outcomes: Any outcome
15	• Study designs: In addition to standard study designs, grey literature (Google Scholar, first
16	20 pages), letters to the editor, and conference abstracts were also eligible for inclusion.
17	• Time frame: Inception to September 11, 2024. The grey literature was searched on
18	November 4, 2024.
19	Summary of Evidence
20	The ScopRev ¹⁸⁴ identified 19 relevant studies (1 RCT, ¹⁸⁶ 2 before-after prospective
21	studies, ^{187,188} 2 observational studies, ^{189,190} 1 case series, ¹⁹¹ and 13 simulation studies ¹⁹²⁻²⁰⁴).
22	Three of the simulation studies assessed pediatric scenarios. ^{196,202,204}

Bray 49

1	One RCT ¹⁸⁶ and 2 prospective observational studies ^{187,188} examined clinical outcomes
2	with and without real-time feedback (Table 7). The RCT reported improved immediate-term
3	patient outcomes with real-time feedback but no change in short-term outcomes. The trial did not
4	adjust for group differences or report ventilation quality. ¹⁸⁶ The 2 observational studies found no
5	change in patient outcomes but noted improved ventilation parameters with real-time
6	feedback. ^{187,188} Most of the simulation studies showed improvements in ventilation quality.
7	Task Force Insights
8	The task force discussed the review findings and noted the following:
9	• Device registration with regulatory authorities alone does not provide evidence of device
10	performance in real-world settings. As rescuer and patient factors influence high-quality
11	ventilation, the current evidence is insufficient to demonstrate the clinical efficacy or
12	effectiveness of real-time ventilation feedback devices.
13	• The lack of studies in humans, the significant heterogeneity between studies, and industry
14	involvement in 7 included studies are all important limitations of the evidence.
15	• Many of the included studies inaccurately labeled inflation volume, the amount of airflow
16	measured at the mask, or the advanced airway as <i>tidal volume</i> . We suggest using
17	inspiratory volume rather than tidal volume for this measurement, because tidal volume
18	represents the amount of air that moves in or out of the lungs with each respiratory cycle.
19	Based on this ScopRev, there is insufficient evidence to pursue a new SysRev on this
20	topic.
21	Knowledge Gaps
22	• High-quality prospective evidence in humans, including changes to ventilation variables

23

and conducted independent of industry, that assess the clinical efficacy (ie, whether the

- 1 devices work in optimal settings) or clinical effectiveness (real-world settings) of these
- 2 devices
- 3 Data in children

4 **Table 7. Clinical Studies Examining Real-Time Ventilation Feedback Devices With Control**

5 Groups

Author (year)	Study design (country)	Population	Participants	Intervention; control	Outcomes (device versus no feedback)
Lee (2023) ¹⁸⁶	RCT (South Korea)	ОНСА	BLS and ALS hospital providers	Real-time visual ventilation feedback device using a flow sensor (n=63); no feedback (n=58)	Survival with neurological good outcome (11.1% versus 10.3%; p=0.77) Survival to discharge (4.9% versus 8.6%; p=0.54) 30-hour survival (49.2% versus 46.5%; p=0.001). ROSC (55.5% versus 36.2%; p=0.04)
Drennan (2024) ¹⁸⁷	Prospective before-after (Canada)	ОНСА	BLS and ALS EMS providers	Real-time visual ventilation feedback device using a flow sensor (n=221); no feedback (n=191)	ROSC (27% versus 29%, p=NS) Ventilation rate (12/min [IQR 10, 17] versus 14/min [11, 19]; p=0.04) Rate in target range (53% \pm 38 versus 29% \pm 9; p<0.001) Insufflation volume (401 mL [353, 472] versus 374 mL [274, 453]; p=0.06) Volume in target range (28% \pm 17 versus 21% \pm 16; p<0.001) Rate and volume in target range (19% \pm 17 versus 7% \pm 10; p<0.001)
Abella (2007) ¹⁸⁸	Prospective cohort (United States)	IHCA	BLS and ALS hospital providers	Real-time audiovisual feedback system using thoracic impedance (n=101); no feedback (n=45)	ROSC (44.6% versus 40.0%; p=0.58) Survival to discharge (8.9% versus 9.1%; p=0.97) Ventilation rate (20 ± 10 /min versus 18 ±8 /min; p=0.12 for difference in mean, p=0.04 for difference in variance)

6 ALS indicates advanced life support; BLS, basic life support; EMS, emergency medical services; IHCA, in-hospital

cardiac arrest; IQR, interquartile range; OHCA, out-of-hospital cardiac arrest; RCT, randomized control trial;
 ROSC, return of spontaneous circulation.

9 **BLS COMPONENTS—DEFIBRILLATION**

10 Pad/Paddle Size and Placement in Adults (BLS 2601: SysRev 2025)

11 *Rationale for Review*

- 12 This was a nodal review with BLS, PLS, and the ALS Task Forces. The existing ILCOR
- 13 treatment recommendation was first published in 2010^{205,206} and reviewed in a ScopRev for the

1	2020 CoSTR. ^{37,38} Publications found in EvUps and the publication of a cluster RCT ²⁰⁷ on pad
2	placement prompted a nodal SysRev ²⁰⁸ with the BLS, PLS, and ALS Task Forces (PROSPERO
3	registration CRD42024512443). The pediatric CoSTR, treatment recommendations, and
4	evidence-to-decision table are reported on the ILCOR website ²⁰⁹ and in the PLS CoSTR
5	section. ¹⁰⁷ The CoSTR can be found on the ILCOR website. ²¹⁰
6	Population, Intervention, Comparator, Outcome, and Time Frame
7	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
8	cardiac arrest and a shockable rhythm at any time during CPR
9	• Intervention: The use of any specific pad size/orientation and position
10	Comparators: Reference standard pad size/orientation and position
11	• Outcomes:
12	- Critical: Survival with favourable neurological outcome at hospital discharge or
13	30 days; survival at hospital discharge or 30 days.
14	- Important: ROSC; termination of ventricular fibrillation (VF); rates of
15	refibrillation.
16	• Time frame: All years to September 22, 2024
17	Consensus on Science
18	Two observational studies ^{211,212} and 1 RCT ²⁰⁷ were identified. Certainty of evidence was
19	very low in all cases.

20 Pad Size

21 No studies compared the effects of different pad sizes with standard size for any critical 22 outcomes or ROSC. One before-and-after study in OHCA reported no difference in defibrillation 23 success with AEDs with large pad size (113 cm²), compared with AEDs with small pad size (65 cm²) (86% versus 88.8%; OR, 0.82 [95% CI, 0.42–1.60]).²¹¹ No studies were identified in the in hospital setting.

3 Pad Positions

4 No RCTs were found that compared different pad placements for the initial defibrillation. One prospective EMS cohort study²¹² adjusting for known predictors found no significant 5 6 difference in favorable neurological outcome at hospital discharge with initial anterior-posterior 7 (AP) pad placement compared with initial anterior-lateral (AL) placement (aOR, 1.86 [95% CI, 8 0.98–3.51]). There was also no difference in survival to hospital discharge (aOR, 1.55 [95% CI, 9 0.83–2.90]) or in defibrillation success (VF termination at 5-second postshock: OR, 1.08 [95% 10 CI, 0.61–1.91]), although AP pad position was associated with higher ROSC rates after adjusting 11 for known predictors (aOR, 2.64 [95% CI, 1.50-4.65]).

12 Pad Positions for Refractory VF

13 One cluster RCT, which was stopped early because of the COVID-19 pandemic, 14 compared vector-change defibrillation (a change to the AP position) with continuation of the 15 standard AL position in 280 adult OHCA patients with refractory VF (ie, persistence of VF or 16 pulseless ventricular tachycardia after 3 consecutive AL defibrillations).²⁰⁷ This RCT reported 17 higher adjusted survival to hospital discharge with vector change to AP pad position (21.7%) 18 versus 13.3%; adjusted risk ratio [aRR], 1.71 [95% CI, 1.01–2.88]), but no difference in 19 favorable neurological outcome at hospital discharge, (aOR, 1.86 [95% CI, 0.98–3.51]). 20 The same RCT reported higher rates of termination of VF with vector change to AP pad 21 position (79.9% versus 67.6%; aRR, 1.18 [95% CI, 1.03–1.36]) but no difference in ROSC 22 (35.4% versus 26.5%; aRR, 1.39 [95% CI, 0.97–1.99]).

23 No studies were identified in the in-hospital setting.

1

Prior Treatment Recommendations (2010)

2	It is reasonable to place pads on the exposed chest in an anterior-lateral position. An
3	acceptable alternative position is anterior posterior. In large-breasted individuals, it is reasonable
4	to place the left electrode pad lateral to or underneath the left breast, avoiding breast tissue.
5	Consideration should be given to the rapid removal of excessive chest hair before the application
6	of pads, but emphasis must be on minimizing delay in shock delivery.
7	There is insufficient evidence to recommend a specific electrode size for optimal external
8	defibrillation in adults. However, it is reasonable to use a pad size greater than 8 cm.
9	Treatment Recommendations (2025)
10	For Defibrillator Manufacturers
11	There is insufficient evidence to recommend a specific pad or paddle size for optimal
12	external defibrillation in adults (good practice statement).
13	Manufacturers should standardize adult pad or paddle placement in the anterior-lateral
14	position (good practice statement). One pad or paddle should be placed below the right clavicle,
15	just to the right of the upper sternal border, and the other with its center in the left midaxillary
16	line, below the armpit.
17	Manufacturers should provide clear instructions to ensure proper contact between the pad
18	or paddle and the skin, along with diagrams that accurately show the ILCOR-recommended pad
19	and paddle positions (good practice statement).
20	For CPR Providers Using an AED
21	Follow the manufacturer's AED guidance and instructions for adult pad placement (good
22	practice statement).

1 For CPR Providers Trained in Manual Defibrillation

2 In adults, place defibrillator pads or paddles in the AL position to optimize placement 3 speed and minimize interruptions to chest compressions (good practice statement). One 4 pad/paddle should be positioned below the patient's right clavicle, just to the right of the upper 5 sternal border. The other pad/paddle should be placed on the patient's left midaxillary line, 6 below the armpit. 7 In adults, if the initial AL position is not feasible, consider using the AP pad position if 8 trained (good practice statement). Place the anterior pad on the left side of the chest, between the 9 midline and the nipple. For female patients, place the anterior pad to the left of the lower 10 sternum, ensuring it avoids breast tissue as much as possible. The posterior pad should be placed 11 on the left side of the patient's spine, just below the scapula. Pad or paddle placement should avoid breast tissue (good practice statement). 12 13 For Health Care Professionals Trained in Vector Change 14 For adults in refractory VF (persistent VF after 3 defibrillations), consider changing pads 15 to the AP pad position (good practice statement). Place the anterior pad on the left side of the 16 chest, between the midline of the chest and the nipple. For female patients, place the anterior pad 17 to the left of the lower sternum, ensuring it avoids breast tissue as much as possible. The 18 posterior pad should be placed on the left side of the patient's spine, just below the scapula. This 19 treatment recommendation does not replace the existing treatment recommendation on vector change and double sequential defibrillation for advanced life support providers.^{6,7} 20 21 Justification and Evidence-to-Decision Framework Highlights 22 The complete evidence-to-decision table is provided in Appendix A.

- 23 The pediatric treatment recommendations are reported in the PLS CoSTR section.¹⁰⁷ In
- 24 making these recommendations for adults, the task forces considered the following:

1	٠	All included studies were at serious risk of bias. No study reported patient outcomes for
2		pad size, and no study compared the effects of different pad placements on patient
3		outcomes except when being used for refractory shockable rhythms. However,
4		defibrillator manufacturers may have proprietary data, and we encourage manufacturers
5		to make this data public.
6	•	In the absence of in-hospital cardiac arrest studies, this evidence could be applied to in-
7		hospital cardiac arrest, with additional downgrading for indirectness.
8	•	Lower transthoracic impedance results in higher current flow, possibly enabling higher
9		defibrillation success. Observational studies in adults showed that transthoracic
10		impedance was significantly higher with small-sized pads/paddles compared with large-
11		sized pads/paddles. ^{211,213,214}
12	•	A secondary analysis of the Double Sequential External Defibrillation for Refractory
13		Ventricular Fibrillation trial ²¹⁵ explored the relationship between vector change to AP
14		placement and the type of VF (shock-refractory or recurrent) on patient outcomes. The
15		study reported that vector-change to AP placement, compared with continuation of AL
16		positioning, was not superior for VF termination, ROSC, or survival for shock-refractory
17		VF. For recurrent VF, vector-change defibrillation was superior for VF termination, but
18		not for ROSC or survival.
19	•	Paddles may still be in use in some low-resource ALS settings. However, the Task Force
20		acknowledges that the AP position is not feasible with paddles and that paddle sizes are
21		standard as provided by the manufacturer. The task force did not foresee future
22		development in the use of paddles.

1	• AEDs have diagrams to guide users in correct pad positioning. However, there is wide
2	variation in these diagrams, and evidence suggests that untrained bystanders fail to
3	achieve accurate pad placement when guided by current defibrillation pad diagrams. ²¹⁶
4	Knowledge Gaps
5	• The impact of different pad positions in the first 3 shocks on patient outcomes
6	• The effect of different pad sizes on patient outcomes
7	• Optimal pad sizes and positions in children and in-hospital settings
8	• The interaction between pad size and orientation
9	Removal of Bra for Pad Placement and Defibrillation (BLS 2604, ScopRev 2025)
10	Rationale for Review
11	The BLS Task Force prioritized this review because the topic is controversial and, to
12	date, no comprehensive review has been undertaken. The full details of this review can be found
13	in the ScopRev ²¹⁷ and on the ILCOR website. ²¹⁸
14	Population, Intervention, Comparator, Outcome, and Time Frame
15	• Population: Adults and children in cardiac arrest
16	• Concept: Adverse events and outcomes associated with pad placement and/or
17	defibrillation without removing the patient's bra/brassiere (including those with metal
18	components)
19	• Context: In patients wearing a bra/brassiere in any setting (in-hospital or out-of-hospital)
20	• Time frame: All years to September 26, 2024. Grey literature searched (Good Scholar,
21	first 200 references) October 1, 2024.

1 Summary of Evidence

- 2 No studies reporting patient outcomes were identified. One animal study²¹⁹ and 2
- 3 simulation mannikin studies 220,221 were included. The evidence is summarized in Table 8.

Study details	Study design, publication type	Intervention	Key findings
Di Maio 2015	Porcine model (n=4) with induction of arrhythmia and defibrillation by an AED Conference abstract	AED pads in direct contact with the metal wires of a bra placed on the pig Induction of VF and defibrillation with 200 J shocks	No scorching or burning of the bra or skin Poor pad placement did not pose a risk to the operator (risk type not specified) No arcing No redirection of the current 100% first shock success (no instances of refibrillation)
Kramer 2015	69 randomly assigned undergraduate students: Simulation of OHCA with CPR and AED on male or female manikins (use of a wig, make-up, silicone breasts, front- opening brassiere, color- coordinated women's clothing). Peer-reviewed article	Voice prompt AED guidance on opening the case, activating AED, positioning of pads, shock delivery, administering CPR	Female manikins less likely to be completely disrobed than the male manikins (42.4% versus 91.7%, p <0.001) Male rescuers less likely to completely disrobe the female manikins than female rescuers (13.3% versus 66.7%, p =0.002) Opinions on removal of clothes: Thought they needed only to remove enough clothing to place the defibrillator pads according to instructions rather than ensuring the brassiere would not affect CPR Social norms Concerned for patient modesty Men did not want to remove more clothing than necessary
O'Hare 2014	78 randomly selected untrained AED users: Simulation of resuscitation with AED use on manikins as either "female" (clothed in a front-opening hooded sweater with a bra) or "male" (no bra) Conference abstract	Removal of clothes (including bra) from the manikin guided by the AED voice prompt	No difference in time to place electrodes: 52 versus 49 seconds for female versus male manikin No difference in time to first shock: 79.5 versus 77 seconds for female versus male manikin 88.5% of the participants correctly placed the electrodes and delivered a shock (sex of manikin not specified)

5 AED indicates automated external defibrillator; CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac 6 arrest; VF, ventricular fibrillation.

7 Task Force Insights

- 8 The evidence-to-decision table is included in Supplement Appendix A. The task force
- 9 discussed the review findings and noted the following:

1	٠	Two included studies were published as conference abstracts by the same group of
2		authors who were employed by a company that develops and manufactures AEDs. ^{5,6} A
3		growing body of research has identified that women are less likely to receive CPR and
4		defibrillation by the public. ²²²⁻²²⁴ Public opinion surveys show that some members of the
5		public do not feel comfortable exposing women's breasts, and fear accusations of
6		inappropriate touching and sexual assault. ²²⁵ These concerns may impact bystanders'
7		willingness to perform CPR and defibrillation and explain why rates are lower in women.
8		Whether it is necessary to remove such undergarments is unknown.
9	•	This ScopRev demonstrated scant evidence on this topic. Peer review occurred for only 2
10		of the 3 included studies. We found no evidence reporting patient outcomes or any case
11		studies reporting adverse events from defibrillation without removing a bra.
12	•	Leaving the bra on could result in inaccurate pad placement, but routine removal could
13		compromise timely defibrillation, particularly in bystander situations. Some AED's
14		verbal and written instructions do not describe bra removal, so the public may not
15		currently remove it to place pads.
16	•	There are likely to be privacy and cultural issues associated with fully exposing a
17		woman's chest. Some resuscitation groups are already actively training to keep the bra on
18		to overcome hesitancy in bystanders. However, correct and timely pad placement must be
19		a priority.
20	•	Although insufficient studies were identified to support a more specific SysRev of
21		defibrillation while wearing a bra at this time, the task force felt the need to highlight and
22		address the inequality in AED application in women by making good practice statements
23		to highlight this issue to the international community.

Bray 59

1 Treatment Recommendations (2025)

2	There is insufficient evidence to guide the routine removal of a bra, but it may not always
3	be necessary to remove a bra for defibrillation. Pads must be placed on bare skin in the correct
4	position, which may be possible by adjusting the bra's position rather than removing it (good
5	practice statement).
6	Manufacturers should develop realistic manikins that reflect different body sizes that can
7	impact pad placement (good practice statement).
8	Where possible, CPR training should cover defibrillation for patients wearing bras,
9	focusing on correct pad placement and minimizing pauses in compressions (good practice
10	statement).
11	Knowledge Gaps
12	• Whether removing a bra is necessary with modern bras, pads, and defibrillators
13	• Sex-specific barriers to high-quality CPR and defibrillation; listening to emergency calls
14	may provide critical insights to address in public messaging and CPR training
15	• A better understanding of public opinions and sociocultural sensitivities related to
16	exposing the chest
17	Effectiveness of Ultraportable AEDs (BLS 2603: ScopRev 2024)
18	A 2024 ScopRev examined the evidence on the effectiveness of ultraportable AEDs. The
19	details of this review can be found in the ScopRev ²²⁶ , the 2024 CoSTR summary, ^{40,41} and on the
20	ILCOR website. ²²⁷
21	Population, Intervention, Comparator, Outcome, and Time Frame
22	• Population: Adults and children in OHCA
23	• Intervention: the use of an ultra-portable or pocket AED
24	• Outcomes: all outcomes were accepted

• Time frame: 2012 to October 31, 2023. We did not search grey literature.

2 Treatment Recommendations (2024)

3 Urgent evaluation of the clinical effectiveness of ultra-portable or pocket AEDs is needed
4 (good practice statement).

5 SPECIAL CIRCUMSTANCES

6 **OHCA Following Drowning**

7 A 2021 ScopRev, 2023 SysRev, and 2025 EvUps examined the evidence on 7 drowning

8 questions. For these questions the population and outcomes are the same across all subtopics, and

- 9 interventions and comparators are detailed for each subtopic. The details of this review can be
- 10 found in the ScopRev,²²⁸ SysRev,²²⁹ the 2023 CoSTR summary,^{6,7} and on the ILCOR website.²³⁰⁻
- 11 234 The 2025 EvUps are provided in Appendix B.

12 Population, Intervention, Comparator, Outcome, and Time Frame

- 13 Population: Adults and children in cardiac arrest following drowning
- Outcomes:
- 15 Critical: Survival to discharge or 30 days with favorable neurological outcome;
- 16 survival to discharge or 30 days
- 17 Important: ROSC
- 18 Time frame: April 25, 2023, to April 14, 2024

19 Immediate Resuscitation in Water or on Boat in Drowning (BLS 2702/2703: 2023 SysRev,

- 20 EvUp 2025)
- 21 Intervention and Comparator
- Intervention: Immediate resuscitation in water or on boat
- Comparator: Delaying resuscitation until on land

1	Summary	of Evidence
---	---------	-------------

2

The EvUp identified no new studies. A SysRev is not warranted.

3 Treatment Recommendations (2023)

- 4 We suggest in-water resuscitation (ventilations only) may be delivered if rescuers, trained
- 5 in this technique, determine that it is feasible and safe with the equipment available and the
- 6 distance to land warrants its use (weak recommendation, very low-certainty evidence).
- 7 We suggest on-boat CPR may be delivered if rescuers trained in this technique determine
- 8 that it is feasible and safe to attempt resuscitation (good practice statement).
- 9 If the rescuers feel that the application of immediate CPR is or becomes too difficult or
- 10 unsafe, then the rescuers may delay resuscitation until on land (good practice statement).

11 CAB Versus ABC in Drowning (BLS 2704: ScopRev, 2023 SysRev 2024, EvUp 2025)

- 12 A slight change to the 2023 treatment recommendation was made to align with the
- 13 treatment recommendations for all cardiac arrest patients.

14 Intervention and Comparator

- Intervention: Resuscitation that incorporates a compression-first strategy (CAB)
- Comparator: Resuscitation that starts with ventilation (ABC)

17 Consensus on Science

- 18 No studies were identified that addressed the PICOST question in the SysRev or the
- 19 EvUp.

20 Prior Treatment Recommendations (2023)

- 21 We recommend a compression-first strategy (CAB) for laypeople providing resuscitation
- 22 for adults and children in cardiac arrest caused by drowning (good practice statement).

1	We recommend health care professionals and those with a duty to respond to drowning
2	(eg, lifeguards) consider providing rescue breaths/ventilation first (ABC) before chest
3	compressions if they have been trained to do so (good practice statement).
4	Treatment Recommendations (2025)
5	We recommend a compression-first strategy (CAB) for laypeople providing resuscitation
6	for adults in cardiac arrest caused by drowning (good practice statement).
7	Health care professionals and those trained and with a duty to respond to drowning (eg,
8	lifeguards) should consider providing rescue breaths/ventilation first (ABC) before chest
9	compressions (good practice statement).
10	Justification and Evidence-to-Decision Framework Highlights
11	There is no evidence-to-decision table as no evidence was identified. In making the good
12	practice statements, the task force considered the following:
13	• The compression-first strategy for adults prioritizes simplicity and cohesiveness in
14	training recommendations for laypersons, with the goal of faster initiation of
15	resuscitation. We also considered the indirect manikin studies ^{110,112-115} published in the
16	review of this question for all cardiac arrests (BLS 2202).
17	• The ventilation-first strategy for health care professionals and those with a duty to
18	respond considers that indirect evidence from a study examining in-water ventilations
19	may improve outcomes ²³⁵ and the specialized training of lifeguards and health care
20	professionals (including cardiac monitoring and ventilation-delivery equipment). It is
21	unclear if earlier ventilations improve outcomes once cardiac arrest has occurred or if the
22	benefit is in preventing respiratory arrest from deteriorating into cardiac arrest.

1	Of note, no direct or indirect evidence is available to support any certain number of initial
2	ventilations if lifeguards or health care professionals adopt a ventilation-first strategy. Most
3	importantly, resuscitation should not be delayed by either selected strategy.
4	Knowledge Gaps
5	There were no studies which directly evaluated this question. Further research, informed
6	by the Utstein template for drowning may usefully address this ongoing uncertainty.
7	Chest Compression-Only CPR in Cardiac Arrest in Drowning (BLS 2705: SysRev 2023,
8	EvUp 2025)
9	Intervention and Comparator
10	Intervention: Chest compression–only CPR
11	• Comparator: Conventional CPR (compressions and ventilations)
12	Summary of Evidence
13	The EvUp identified no new studies. No SysRev is warranted.
14	Treatment Recommendations (2023)
15	For lay responders, the treatment recommendations for CPR in drowned OHCA patients
16	who have been removed from the water remain consistent with CPR for all patients in cardiac
17	arrest (good practice statement).
18	Adults: We recommend that bystanders perform chest compressions for all patients in
19	cardiac arrest.
20	We suggest that bystanders who are trained, able, and willing to give rescue breaths and
21	chest compressions do so for adults in cardiac arrest.
22	Children: We suggest that bystanders provide CPR with ventilation for infants and
23	children younger than 18 years with OHCA.

1	We recommend that if bystanders cannot provide rescue breaths as part of CPR for
2	infants and children younger than 18 years with OHCA, they should at least provide chest
3	compressions.
4	For health care professionals and those with a duty to respond to drowning (eg,
5	lifeguards), we recommend providing ventilation in addition to chest compressions if they have
6	been trained and are able and willing to do so (good practice statement).
7	Ventilation Equipment in Cardiac Arrest Following Drowning (BLS 2706: SysRev 2023,
8	EvUp 2025)
9	Intervention and Comparator
10	• Intervention: Ventilation with equipment before hospital arrival
11	• Comparator: Ventilation without equipment before hospital arrival
12	Summary of Evidence
13	The EvUp identified no new studies. No SysRev is warranted.
14	Treatment Recommendations (2023)
15	We recommend that health care professionals follow the ALS treatment
16	recommendations for airway management for adults and children in cardiac arrest caused by
17	drowning. ^{45,46}
18	Prehospital Oxygen Administration Following Drowning (BLS 2707: SysRev 2023, EvUp
19	2025)
20	Intervention and Comparator
21	• Intervention: Oxygen administration before hospital arrival
22	• Comparator: No oxygen administration before hospital arrival

Summary of Evidence
The EvUp identified no new studies. No SysRev is warranted.
Treatment Recommendations (2023)
When available, we recommend trained providers use the highest possible inspired
oxygen concentration during resuscitation for adults and children in cardiac arrest following
drowning (good practice statement).
AED Use First Versus CPR First in Cardiac Arrest in Drowning (BLS 2708: ScopRev,
SysRev 2023, EvUp 2025)
Intervention and Comparator
• Intervention: AED administered before CPR
Comparator: CPR administered before AED
Summary of Evidence
The EvUp identified no new studies. No SysRev is warranted.
Treatment Recommendations (2023)
We recommend that CPR should be started first and continued until an AED has been
obtained and is ready for use for adults and children in cardiac arrest caused by drowning (good
practice statement).
When available, we recommend an AED is used in cardiac arrest caused by drowning in
adults and children (good practice statement).
PAD Programs for Drowning (BLS 2709: SysRev 2023, EvUp 2025)
Intervention and Comparator
• Intervention: PAD program
• Comparator: Absence of PAD program

1	Summary of Evidence
2	The EvUp identified no new studies. No SysRev is warranted.
3	Treatment Recommendations (2023)
4	This treatment recommendation is unchanged from the standing recommendation for all
5	OHCAs.
6	We recommend implementing PAD programs for all patients with OHCA (strong
7	recommendation, low-certainty evidence). ^{37,38}
8	CPR During Transport (BLS 2715: SysRev 2022, EvUp 2025)
9	A 2022 SysRev and 2025 EvUp examined the evidence on CPR during transport. The
10	details of this SysRev can be found in the 2022 CoSTR summary ^{169,170} and on the ILCOR
11	website. ²³⁶ The 2025 EvUp is provided in Appendix B.
12	Population, Intervention, Comparator, Outcome, and Time Frame
13	• Population: Adults and children receiving CPR following OHCA
14	• Intervention: Transport with ongoing CPR
15	• Comparator: Completing CPR on scene (until ROSC or termination of resuscitation)
16	• Outcomes:
17	- Critical: Survival to hospital discharge with good neurological outcome; survival
18	to hospital discharge
19	- Important: Quality of CPR metrics on scene versus during transport (reported
20	outcomes may include rate of chest compressions, depth of chest compressions,
21	chest compression fraction, interruptions to chest compressions, leaning on
22	chest/incomplete release, rate of ventilation, volume of ventilation, duration of
23	ventilation, pressure of ventilation); ROSC.
24	• Time frame: November 2020 to April 22, 2024

1 Summary of Evidence

The EvUp identified several studies,²³⁷⁻²⁴⁶ including a protocol²⁴⁷ and early results in 2 3 abstract form²⁴⁸ for a recently completed but not yet fully published RCT. This SysRev will be 4 updated following the publication of the RCT. 5 **Treatment Recommendations (2022)** 6 We suggest that providers deliver resuscitation at the scene rather than undertake 7 ambulance transport with ongoing resuscitation unless there is an appropriate indication to justify 8 transport (eg, extracorporeal membrane oxygenation) (weak recommendation, very low-9 certainty evidence). 10 The quality of manual CPR may be reduced during transport. We recommend that 11 whenever transport is indicated, EMS providers should focus on the delivery of high-quality 12 CPR throughout transport (strong recommendation, very low-certainty evidence). 13 Delivery of manual CPR during transport increases the risk of injury to providers. We 14 recommend that EMS systems have a responsibility to assess this risk and, where practicable, to 15 implement measures to mitigate the risk (good practice statement).

16 CPR in Obese Patients (BLS 2720, ScopRev 2025)

17 Rationale for Review

18 This topic was prioritized for review by the BLS, the ALS, the PLS, and the Education, 19 Implementation, and Teams Task Forces because of the increasing prevalence of obesity 20 worldwide and the specific challenges in providing CPR to this patient cohort. This topic has not 21 previously been reviewed by ILCOR. The full details of this review can be found in the 22 ScopRev²⁴⁹ and on the ILCOR website.²⁵⁰

1	Population, Intervention, Comparator, Outcome, and Time Frame
2	• Population: Adults and children in any setting (in-hospital or out-of-hospital) with
3	cardiac arrest
4	• Intervention: CPR (including mechanical and e-CPR) in obese patients (as defined in
5	specific papers)
6	• Comparators: May have no comparator, comparator of nonobese patients, or compare
7	modified CPR for obese patients with standard CPR
8	• Outcomes:
9	- Critical: Survival to hospital discharge with good neurological outcome; survival
10	to hospital discharge
11	- Important: ROSC; CPR quality measures (chest compression rate, chest
12	compression depth, ventilation rate, tidal volume, end-tidal carbon dioxide), CPR
13	timing (time to commencement of rescue breaths, first compression, first
14	defibrillation if shockable rhythm); CPR techniques (chest compressions,
15	defibrillation, ventilation and airway management, vascular access and
16	medications); health-related quality of life and provider outcomes (safety, manual
17	handling)
18	• Time frame: All years to October 1, 2024
19	Summary of Evidence
20	Thirty-six studies were included. ²⁵¹⁻²⁸⁶ Definitions of <i>obesity</i> varied. Full reporting of the
21	results can be found in the ScopRev. ²⁴⁹
22	In adults, the association between obesity and neurological outcomes, survival to hospital
23	discharge, longer-term survival (months to years), and ROSC was variable. In children, worse
24	neurological outcomes, lower survival, and lower ROSC than normal-weight children were

	1	reported in 2 studies.	Few studies reported	resuscitation quality	indicators, and no studies
--	---	------------------------	----------------------	-----------------------	----------------------------

2 reported on adjustments to CPR techniques or provider outcomes.

3 Task Force Insights

- 4 The task force discussed the review findings and noted the following:
- At the time of this review, there was no universal definition of *obesity* so for the purposes
- of this ScopRev, *obese* was defined according to each individual study. There was wide
 variability in the definitions of *obesity* across the studies.
- In adults, the evidence of the impact of obesity on patient outcomes was conflicting.
- In children, 2 studies suggested that obese children had worse neurological outcomes,
- 10 lower survival, and lower ROSC than normal-weight children.
- The variability in results does not suggest an urgent need to deviate from standard CPR
 protocols. Some evidence suggests CPR duration may be longer in obese adults, which
 may have staffing and resource implications.
- 14 Treatment Recommendations
- 15 Standard CPR protocols should be used in obese patients (good practice statement).

16 Knowledge Gaps

- There are few studies of CPR in obese infants, children, and adolescents.
- A standardized definition of *obese*, or population-specific definition of *obese*, for the
- 19 purpose of resuscitation research
- The true impact of obesity on CPR outcomes when other factors are accounted for
- The effect of obesity on CPR techniques (such as chest compressions, airway
- 22 management and ventilation, and defibrillation), CPR quality, and time to and delivery of

1	resuscitation interventions (such as vascular access and medications, use of mechanical
2	CPR devices, or extracorporeal membrane oxygenation) in both adults and children
3	• Whether the degree of obesity influences CPR performance, outcomes following CPR
4	(including health-related quality of life), or inclusion in CPR research.
5	• The effect of patient obesity on provider outcomes (eg, physical exertion, manual
6	handling, fatigue)
7	Topics Not Included in the 2025 Review
8	• Public access defibrillation programs (BLS 2121)
9	• CPR prior to defibrillation (BLS 2203)
10	• Check for circulation during BLS (BLS 2210)
11	• Timing of rhythm check (BLS 2211)
12	• Chest compression rate, depth, recoil (BLS 2501)
13	Topics Retired or Reposed
14	• Rescuer fatigue in chest compression–only CPR
15	• CPR before call for help
16	• Alternative compression techniques (cough, precordial thump, fist pacing)
17	Topics Moved to the First Aid Task Force
18	• Harm from CPR to victims not in arrest
19	• Foreign-body airway obstruction
20	Resuscitation care for suspected opioid-associated emergencies
21	• Drowning factors related to survival

Bray 71

1 COLLABORATORS

2		The authors thank the following individuals (the Adult Basic Life Support Collaborators)		
3	for their contributions: Stella Le, Lorena Romero, Ingrid Tjelmeland, Anne S. Noerskov, Anne			
4	Juul Grabmayr, Lawrence Oonyu.			
5	Refe	RENCES		
6	1.	International Liaison Committee on Resuscitation. ILCOR website.		
7		https://www.ilcor.org/. Accessed January 10, 2025.		
8	2.	Morley et al. Methodology and Conflict of Interest Management: 2025 International		
9		Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care		
10		Science With Treatment Recommendations. Circulation. 2025:placeholder.		
11	3.	EIT Task Force. Education, Implementation, and Teams: 2025 International Consensus		
12		on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With		
13		Treatment Recommendations. Circulation. 2025:placeholder.		
14	4.	Drennan et al. Advanced Life Support: 2025 International Consensus on Science With		
15		Treatment Recommendations. Circulation. 2025:placeholder.		
16	5.	Chung SP, Nehme Z, Johnson NJ, Lagina A, Bray J, on behalf of the International		
17		Liaison Committee on Resuscitation BLS Task Force. Effects of personal protective		
18		equipment on cardiopulmonary resuscitation quality and outcomes: A systematic review.		
19		Resusc Plus. 2023;14:100398. doi: 10.1016/j.resplu.2023.100398		
20	б.	Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR,		
21		Smyth M, Scholefield BR, et al. 2023 International Consensus on Cardiopulmonary		
22		Resuscitation and Emergency Cardiovascular Care Science With Treatment		
23		Recommendations: Summary From the Basic Life Support; Advanced Life Support;		
24		Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams;		
1 and First Aid Task Forces. *Circulation*. 2023;148:e187-e280. doi:

2 10.1161/CIR.000000000001179

- 3 7. Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR,
- 4 Smyth M, Scholefield BR, et al. 2023 International Consensus on Cardiopulmonary
- 5 Resuscitation and Emergency Cardiovascular Care Science With Treatment
- 6 Recommendations: Summary From the Basic Life Support; Advanced Life Support;
- 7 Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams;
- 8 and First Aid Task Forces. *Resuscitation*. 2023:109992. doi:
- 9 10.1016/j.resuscitation.2023.109992
- 10 8. Chung SP, Nehme Z, Lagina A, Johnson NJ, Bray J, on behalf of the International
- 11 Liaison Committee on Resuscitation BLS Task Force. CPR by rescuers wearing PPE vs
- 12 no PPE for Cardiac Arrest in Adults and Children Consensus on Science with Treatment
- 13 Recommendations. <u>https://costr.ilcor.org/document/cpr-by-rescuers-wearing-ppe-bls-tfsr</u>.
- 14 Accessed January 10, 2025.
- 15 9. Tangpaisarn T, Chaiyakot N, Saenpan K, Sriphrom S, Owattanapanich N, Kotruchin P,
- 16 Phungoen P. Surgical mask-to-mouth ventilation as an alternative ventilation technique
- 17 during CPR: A crossover randomized controlled trial. *The American Journal of*
- 18 *Emergency Medicine*. 2023;72:158-163.
- 19 10. Starosolski M, Zysiak-Christ B, Kalemba A, Kapłan C, Ulbrich K. A Simulation Study
- 20 Using a Quality Cardiopulmonary Resuscitation Medical Manikin to Evaluate the Effects
- 21 of Using Personal Protective Equipment on Performance of Emergency Resuscitation by
- 22 Medical Students from the University of Silesia, Katowice, Poland and Non-Medical
- 23 Personnel. Medical Science Monitor: International Medical Journal of Experimental and
- 24 *Clinical Research*. 2022;28:e936844-936841.

1	11.	Sellmann T, Nur M, Wetzchewald D, Schwager H, Cleff C, Thal SC, Marsch S. COVID-
2		19 CPR—Impact of Personal Protective Equipment during a Simulated Cardiac Arrest in
3		Times of the COVID-19 Pandemic: A Prospective Comparative Trial. Journal of Clinical
4		Medicine. 2022;11:5881.
5	12.	Cheng C-H, Cheng Y-Y, Yuan M-K, Juang Y-J, Zeng X-Y, Chen C-Y, Foo N-P. Impact
6		of Personal Protective Equipment on Cardiopulmonary Resuscitation and Rescuer Safety.
7		Emergency Medicine International. 2023;2023:9697442.
8	13.	Ashoor HM, Lillie E, Zarin W, Pham B, Khan PA, Nincic V, Yazdi F, Ghassemi M,
9		Ivory J, Cardoso R, et al. Effectiveness of different compression-to-ventilation methods
10		for cardiopulmonary resuscitation: A systematic review. Resuscitation. 2017;118:112-
11		125. doi: 10.1016/j.resuscitation.2017.05.032
12	14.	Olasveengen TM, de Caen AR, Mancini ME, Maconochie IK, Aickin R, Atkins DL, Berg
13		RA, Bingham RM, Brooks SC, Castren M, et al. 2017 International Consensus on
14		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
15		Treatment Recommendations Summary. Circulation. 2017;136:e424-e440. doi:
16		10.1161/CIR.00000000000541
17	15.	Olasveengen TM, de Caen AR, Mancini ME, Maconochie IK, Aickin R, Atkins DL, Berg
18		RA, Bingham RM, Brooks SC, Castren M, et al. 2017 International Consensus on
19		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
20		Treatment Recommendations Summary. Resuscitation. 2017;121:201-214. doi:
21		10.1016/j.resuscitation.2017.10.021
22	16.	Bray et al. The effectiveness of different compression-to-ventilation ratios for
23		cardiopulmonary resuscitation: an updated systematic review (CRD42024559318). TBD.
24		2025:placeholder.

1	17.	Bray J, Cash R, Nehme Z, de Caen A, Perkins G, Dewan M, Dicker B, Dassanayake V,
2		Raffay V, Vaillancourt C, et al. Bystander (without DA-CPR) Compression-only CPR
3		compared with Conventional CPR in Adults Consensus on Science with Treatment
4		Recommendations https://costr.ilcor.org/document/bystander-without-da-cpr-
5		compression-only-cpr-compared-with-conventional-cpr-in-adults-bls-2220-tf-sr.
6		Accessed January 10, 2025.
7	18.	Olasveengen TM, Wik L, Steen PA. Standard basic life support vs. continuous chest
8		compressions only in out-of-hospital cardiac arrest. Acta Anaesthesiol Scand.
9		2008;52:914-919. doi: 10.1111/j.1399-6576.2008.01723.x
10	19.	SOS-Kanto Study Group. Cardiopulmonary resuscitation by bystanders with chest
11		compression only (SOS-KANTO): an observational study. Lancet. 2007;369:920-926.
12		doi: 10.1016/S0140-6736(07)60451-6
13	20.	Iwami T, Kitamura T, Kiyohara K, Kawamura T. Dissemination of Chest Compression-
14		Only Cardiopulmonary Resuscitation and Survival After Out-of-Hospital Cardiac Arrest.
15		Circulation. 2015;132:415-422. doi: 10.1161/circulationaha.114.014905
16	21.	Iwami T, Kawamura T, Hiraide A, Berg RA, Hayashi Y, Nishiuchi T, Kajino K,
17		Yonemoto N, Yukioka H, Sugimoto H, et al. Effectiveness of bystander-initiated cardiac-
18		only resuscitation for patients with out-of-hospital cardiac arrest. Circulation.
19		2007;116:2900-2907. doi: 10.1161/CIRCULATIONAHA.107.723411
20	22.	Ong ME, Ng FS, Anushia P, Tham LP, Leong BS, Ong VY, Tiah L, Lim SH,
21		Anantharaman V. Comparison of chest compression only and standard cardiopulmonary
22		resuscitation for out-of-hospital cardiac arrest in Singapore. Resuscitation. 2008;78:119-
23		126. doi: 10.1016/j.resuscitation.2008.03.012

1	23.	Bohm K, Rosenqvist M, Herlitz J, Hollenberg J, Svensson L. Survival Is Similar After
2		Standard Treatment and Chest Compression Only in Out-of-Hospital Bystander
3		Cardiopulmonary Resuscitation. Circulation. 2007;116:2908-2912. doi:
4		10.1161/CIRCULATIONAHA.107.710194
5	24.	Bobrow BJ, Spaite DW, Berg RA, Stolz U, Sanders AB, Kern KB, Vadeboncoeur TF,
6		Clark LL, Gallagher JV, Stapczynski JS, et al. Chest compression-only CPR by lay
7		rescuers and survival from out-of-hospital cardiac arrest. JAMA : the journal of the
8		American Medical Association. 2010;304:1447-1454. doi: 10.1001/jama.2010.1392
9	25.	Bray JE, Deasy C, Walsh J, Bacon A, Currell A, Smith K. Changing EMS dispatcher
10		CPR instructions to 400 compressions before mouth-to-mouth improved bystander CPR
11		rates. Resuscitation. 2011;82:1393-1398. doi: 10.1016/j.resuscitation.2011.06.018
12	26.	Kitamura T, Iwami T, Kawamura T, Nitta M, Nagao K, Nonogi H, Yonemoto N, Kimura
13		T, Japanese Circulation Society Resuscitation Science Study G. Nationwide
14		improvements in survival from out-of-hospital cardiac arrest in Japan. Circulation.
15		2012;126:2834-2843. doi: 10.1161/CIRCULATIONAHA.112.109496
16	27.	Malta Hansen C, Kragholm K, Pearson DA, Tyson C, Monk L, Myers B, Nelson D,
17		Dupre ME, Fosbol EL, Jollis JG, et al. Association of Bystander and First-Responder
18		Intervention With Survival After Out-of-Hospital Cardiac Arrest in North Carolina,
19		2010-2013. JAMA : the journal of the American Medical Association. 2015;314:255-264.
20		doi: 10.1001/jama.2015.7938
21	28.	Waalewijn RA, Tijssen JG, Koster RW. Bystander initiated actions in out-of-hospital
22		cardiopulmonary resuscitation: results from the Amsterdam Resuscitation Study
23		(ARRESUST). Resuscitation. 2001;50:273-279. doi: 10.1016/s0300-9572(01)00354-9

1	29.	Panchal AR, Bobrow BJ, Spaite DW, Berg RA, Stolz U, Vadeboncoeur TF, Sanders AB,
2		Kern KB, Ewy GA. Chest compression-only cardiopulmonary resuscitation performed by
3		lay rescuers for adult out-of-hospital cardiac arrest due to non-cardiac aetiologies.
4		Resuscitation. 2013;84:435-439. doi: 10.1016/j.resuscitation.2012.07.038
5	30.	Van Hoeyweghen RJ, Bossaert LL, Mullie A, Calle P, Martens P, Buylaert WA, Delooz
6		H. Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study
7		Group. Resuscitation. 1993;26:47-52. doi: 10.1016/0300-9572(93)90162-j
8	31.	Riva G, Boberg E, Ringh M, Jonsson M, Claesson A, Nord A, Rubertsson S, Blomberg
9		H, Nordberg P, Forsberg S, et al. Compression-Only or Standard Cardiopulmonary
10		Resuscitation for Trained Laypersons in Out-of-Hospital Cardiac Arrest: A Nationwide
11		Randomized Trial in Sweden. Circ Cardiovasc Qual Outcomes. 2024;17:e010027. doi:
12		10.1161/CIRCOUTCOMES.122.010027
13	32.	Bray JE, Smith K, Case R, Cartledge S, Straney L, Finn J. Public cardiopulmonary
14		resuscitation training rates and awareness of hands-only cardiopulmonary resuscitation: a
15		cross-sectional survey of Victorians. Emerg Med Australas. 2017;29:158-164. doi:
16		10.1111/1742-6723.12720
17	33.	Cheskes L, Morrison LJ, Beaton D, Parsons J, Dainty KN. Are Canadians more willing to
18		provide chest-compression-only cardiopulmonary resuscitation (CPR)?a nation-wide
19		public survey. CJEM. 2016;18:253-263. doi: 10.1017/cem.2015.113
20	34.	Min Ko RJ, Wu VX, Lim SH, San Tam WW, Liaw SY. Compression-only
21		cardiopulmonary resuscitation in improving bystanders' cardiopulmonary resuscitation
22		performance: a literature review. Emergency Medicine Journal. 2016;33:882. doi:
23		10.1136/emermed-2015-204771

1	35.	Beard M, Swain A, Dunning A, Baine J, Burrowes C. How effectively can young people
2		perform dispatcher-instructed cardiopulmonary resuscitation without training?
3		Resuscitation. 2015;90:138-142. doi: https://doi.org/10.1016/j.resuscitation.2015.02.035
4	36.	Drennan IR, Geri G, Brooks S, Couper K, Hatanaka T, Kudenchuk P, Olasveengen T,
5		Pellegrino J, Schexnayder SM, Morley P, et al. Diagnosis of out-of-hospital cardiac arrest
6		by emergency medical dispatch: A diagnostic systematic review. Resuscitation.
7		2021;159:85-96. doi: 10.1016/j.resuscitation.2020.11.025
8	37.	Olasveengen TM, Mancini ME, Perkins GD, Avis S, Brooks S, Castren M, Chung SP,
9		Considine J, Couper K, Escalante R, et al. Adult Basic Life Support: International
10		Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
11		Science With Treatment Recommendations. Resuscitation. 2020;156:A35-A79. doi:
12		10.1016/j.resuscitation.2020.09.010
13	38.	Olasveengen TM, Mancini ME, Perkins GD, Avis S, Brooks S, Castren M, Chung SP,
14		Considine J, Couper K, Escalante R, et al. Adult Basic Life Support: 2020 International
15		Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
16		Science With Treatment Recommendations. Circulation. 2020;142:S41-S91. doi:
17		10.1161/CIR.00000000000892
18	39.	Juul Grabmayr A, Dicker B, Dassanayake V, Bray J, Vaillancourt C, Dainty KN,
19		Olasveengen T, Malta Hansen C, on behalf of the International Liaison Committee on
20		Resuscitation Basic Life Support Task Force. Optimising telecommunicator recognition
21		of out-of-hospital cardiac arrest: A scoping review. Resusc Plus. 2024;20:100754. doi:
22		10.1016/j.resplu.2024.100754
23	40.	Greif R, Bray JE, Djarv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ,
24		Scholefield BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary

1		Resuscitation and Emergency Cardiovascular Care Science With Treatment
2		Recommendations: Summary From the Basic Life Support; Advanced Life Support;
3		Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams;
4		and First Aid Task Forces. Circulation. 2024;150:e580-e687. doi:
5		10.1161/CIR.00000000001288
6	41.	Greif R, Bray JE, Djarv T, Drennan IR, Liley HG, Ng KC, Cheng A, Douma MJ,
7		Scholefield BR, Smyth M, et al. 2024 International Consensus on Cardiopulmonary
8		Resuscitation and Emergency Cardiovascular Care Science With Treatment
9		Recommendations: Summary From the Basic Life Support; Advanced Life Support;
10		Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams;
11		and First Aid Task Forces. Resuscitation. 2024:110414. doi:
12		10.1016/j.resuscitation.2024.110414
13	42.	Malta Hansen C, Juul Grabmayr A, Dicker B, Dassanayake V, Vaillancourt C, Dainty
14		KN, Olasveengen T, Bray J, on behalf of the International Liaison Committee on
15		Resuscitation Basic Life Support Task Force. Optimization of Dispatcher-Assisted
16		Recognition of Out-of-Hospital Cardiac Arrest: a BLS Task Force Synthesis of a Scoping
17		Review. Available from: https://costr.ilcor.org/document/optimization-of-dispatcher-
18		assisted-da-recognition-of-ohca-a-scoping-review-bls-2102-scr. Accessed January 10,
19		2025.
20	43.	Tangpaisarn T, Srinopparatanakul T, Artpru R, Kotruchin P, Ienghong K, Apiratwarakul
21		K. Unrecognized Out of Hospital Cardiac Arrest Symptoms during Thailand's
22		Emergency Medical Services. Open Access Macedonian Journal of Medical Sciences.
23		2021;9:1-4.

1	44.	Saberian P, Sadeghi M, Hasani-Sharamin P, Modabber M, Baratloo A. Diagnosis of out-
2		of-hospital cardiac arrest by emergency medical dispatchers: A diagnostic accuracy
3		study. Australasian Journal of Paramedicine. 2019;16. doi:
4		http://dx.doi.org/10.33151/ajp.16.691
5	45.	Soar J, Maconochie I, Wyckoff MH, Olasveengen TM, Singletary EM, Greif R, Aickin
6		R, Bhanji F, Donnino MW, Mancini ME, et al. 2019 International Consensus on
7		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
8		Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
9		Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and
10		Teams; and First Aid Task Forces. Circulation. 2019;140:e826-e880. doi:
11		10.1161/CIR.00000000000734
12	46.	Soar J, Maconochie I, Wyckoff MH, Olasveengen TM, Singletary EM, Greif R, Aickin
13		R, Bhanji F, Donnino MW, Mancini ME, et al. 2019 International Consensus on
14		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
15		Treatment Recommendations. Resuscitation. 2019;145:95-150. doi:
16		10.1016/j.resuscitation.2019.10.016
17	47.	Dainty KN, Debaty G, Waddick J, Vaillancourt C, Malta Hansen C, Olasveengen T, Bray
18		J, on behalf of the International Liaison Committee on Resuscitation BLS Task Force.
19		Interventions to optimize dispatcher-assisted CPR instructions: A scoping review. Resusc
20		Plus. 2024;19:100715. doi: 10.1016/j.resplu.2024.100715
21	48.	Dainty K, Debaty G VC, Smyth M, Olasveengen T, Bray J on behalf of the International
22		Liaison Committee on Resuscitation Basic Life Support Task Force Interventions used
23		with Dispatcher-assisted CPR Task Force Synthesis of a Scoping Review.

1		https://costr.ilcor.org/document/optimization-of-dispatcher-assisted-cpr-instructions-a-
2		scoping-review-bls-2113-scr. Accessed January 10, 2025.
3	49.	Aranda-Garcia S, Barrio-Cortes J, Fernandez-Mendez F, Otero-Agra M, Darne M,
4		Herrera-Pedroviejo E, Barcala-Furelos R, Rodriguez-Nunez A. Dispatcher-assisted BLS
5		for lay bystanders: A pilot study comparing video streaming via smart glasses and
6		telephone instructions. Am J Emerg Med. 2023;71:163-168. doi:
7		10.1016/j.ajem.2023.06.035
8	50.	Barcala-Furelos R, Aranda-Garcia S, Otero-Agra M, Fernandez-Mendez F, Alonso-
9		Calvete A, Martinez-Isasi S, Greif R, Rodriguez-Nunez A. Are smart glasses feasible for
10		dispatch prehospital assistance during on-boat cardiac arrest? A pilot simulation study
11		with fishermen. Intern Emerg Med. 2023;18:1551-1559. doi: 10.1007/s11739-023-
12		03251-6
13	51.	Chen YJ, Chen CY, Kang CW, Tzeng DW, Wang CC, Hsu CF, Huang TL, Liu CY, Tsai
14		YT, Weng SJ. Dispatchers trained in persuasive communication techniques improved the
15		effectiveness of dispatcher-assisted cardiopulmonary resuscitation. Resuscitation.
16		2024;196:110120. doi: 10.1016/j.resuscitation.2024.110120
17	52.	Holzing CR, Brinkrolf P, Metelmann C, Metelmann B, Hahnenkamp K, Baumgarten M.
18		Potential to enhance telephone cardiopulmonary resuscitation with improved instructions
19		- findings from a simulation-based manikin study with lay rescuers. BMC Emerg Med.
20		2023;23:36. doi: 10.1186/s12873-023-00810-0
21	53.	Ohk T, Cho J, Yang G, Ahn M, Lee S, Kim W, Lee T. Effectiveness of a dispatcher-
22		assisted CPR using an animated image: Simulation study. Am J Emerg Med.
23		2024;78:132-139. doi: 10.1016/j.ajem.2024.01.022

1	54.	Szollosi V, Horvath B, Nemeth D, Banfai-Csonka H, Betlehem J, Banfai B. A
2		randomized controlled simulation trial comparing video-assisted with telephone-assisted
3		and unassisted cardiopulmonary resuscitation performed by non-healthcare university
4		students. Sci Rep. 2023;13:14925. doi: 10.1038/s41598-023-42131-z
5	55.	Takano K, Asai H, Fukushima H. Effect of Coaching with Repetitive Verbal
6		Encouragements on Dispatch-Assisted Cardiopulmonary Resuscitation: A Randomized
7		Simulation Study. J Emerg Med. 2022;63:240-246. doi: 10.1016/j.jemermed.2022.05.010
8	56.	Wetsch WA, Ecker HM, Scheu A, Roth R, Bottiger BW, Plata C. Video-assisted
9		cardiopulmonary resuscitation: Does the camera perspective matter? A randomized,
10		controlled simulation trial. J Telemed Telecare. 2024;30:98-106. doi:
11		10.1177/1357633X211028490
12	57.	Xu J, Qu M, Dong X, Chen Y, Yin H, Qu F, Zhang L. Tele-Instruction Tool for Multiple
13		Lay Responders Providing Cardiopulmonary Resuscitation in Telehealth Emergency
14		Dispatch Services: Mixed Methods Study. J Med Internet Res. 2023;25:e46092. doi:
15		10.2196/46092
16	58.	Cash R, Nehme Z, de Caen A, Perkins G, Dewan M, Dicker B, Dassanayake V, Raffay
17		V, Vaillancourt C, Olasveengen T, et al. Basic Life Support Task Force. Dispatcher-
18		assisted Compression-only CPR compared with Conventional CPR in Adults Consensus
19		on Science with Treatment Recommendations
20		https://costr.ilcor.org/document/dispatcher-assisted-compression-only-cpr-compared-
21		with-conventional-cpr-in-adults-bls-2112-tf-sr
22	. Acce	essed January 10, 2025.

1	59.	Rea TD, Fahrenbruch C, Culley L, Donohoe RT, Hambly C, Innes J, Bloomingdale M,
2		Subido C, Romines S, Eisenberg MS. CPR with chest compression alone or with rescue
3		breathing. N Engl J Med. 2010;363:423-433. doi: 10.1056/NEJMoa0908993
4	60.	Hallstrom A, Cobb L, Johnson E, Copass M. Cardiopulmonary resuscitation by chest
5		compression alone or with mouth-to-mouth ventilation. N Engl J Med. 2000;342:1546-
6		1553. doi: 10.1056/NEJM200005253422101
7	61.	Svensson L, Bohm K, Castren M, Pettersson H, Engerstrom L, Herlitz J, Rosenqvist M.
8		Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. N Engl J Med.
9		2010;363:434-442. doi: 10.1056/NEJMoa0908991
10	62.	Goto Y, Funada A, Maeda T, Goto Y. Dispatcher instructions for bystander
11		cardiopulmonary resuscitation and neurologically intact survival after bystander-
12		witnessed out-of-hospital cardiac arrests: a nationwide, population-based observational
13		study. Crit Care. 2021;25:408. doi: 10.1186/s13054-021-03825-w
14	63.	Javaudin F, Raiffort J, Desce N, Baert V, Hubert H, Montassier E, Le Cornec C,
15		Lascarrou JB, Le Bastard Q. Neurological Outcome of Chest Compression-Only
16		Bystander CPR in Asphyxial and Non-Asphyxial Out-Of-Hospital Cardiac Arrest: An
17		Observational Study. Prehosp Emerg Care. 2021;25:812-821. doi:
18		10.1080/10903127.2020.1852354
19	64.	Wnent J, Tjelmeland I, Lefering R, Koster RW, Maurer H, Masterson S, Herlitz J,
20		Böttiger BW, Ortiz FR, Perkins GD, et al. To ventilate or not to ventilate during
21		bystander CPR - A EuReCa TWO analysis. Resuscitation. 2021;166:101-109. doi:
22		10.1016/j.resuscitation.2021.06.006
23	65.	Kitamura T, Kiyohara K, Nishiyama C, Kiguchi T, Kobayashi D, Kawamura T, Iwami T.
24		Chest compression-only versus conventional cardiopulmonary resuscitation for

1		bystander-witnessed out-of-hospital cardiac arrest of medical origin: A propensity score-
2		matched cohort from 143,500 patients. Resuscitation. 2018;126:29-35. doi:
3		10.1016/j.resuscitation.2018.02.017
4	66.	Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-
5		hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual
6		Outcomes. 2010;3:63-81. doi: 10.1161/CIRCOUTCOMES.109.889576
7	67.	Riva G, Boberg E, Ringh M, Jonsson M, Claesson A, Nord A, Rubertsson S, Blomberg
8		H, Nordberg P, Forsberg S, et al. Compression-Only or Standard Cardiopulmonary
9		Resuscitation for Trained Laypersons in Out-of-Hospital Cardiac Arrest: A Nationwide
10		Randomized Trial in Sweden. Circulation Cardiovascular quality and outcomes.
11		2024;17:e010027. doi: 10.1161/circoutcomes.122.010027
12	68.	Javaudin F, Raiffort J, Desce N, Baert V, Hubert H, Montassier E, Le Cornec C,
13		Lascarrou JB, Le Bastard Q, ReAC GR. Neurological Outcome of Chest Compression-
14		Only Bystander CPR in Asphyxial and Non-Asphyxial Out-Of-Hospital Cardiac Arrest:
15		An Observational Study. Prehosp Emerg Care. 2021;25:812-821. doi:
16		10.1080/10903127.2020.1852354
17	69.	Smith et al. Dispatcher instructions for public-access AED retrieval and/or use. TBD.
18		2025:placeholder.
19	70.	Smith CM, Snow L, Whiting J, Smyth M, Olasveengen T, Bray J, on behalf of the
20		International Liaison Committee on Resuscitation Basic Life Support Task Force.
21		Dispatcher instructions for public-access AED retrieval and/or use. Task Force Synthesis
22		of a Scoping Review. https://costr.ilcor.org/document/optimization-of-dispatcher-
23		assisted-public-access-aed-retrieval-and-use-a-scoping-review-bls-2120. Accessed
24		January 10, 2025.

1	71.	Kollander LJ, Kjærulf V, Bray J, Olasveengen TM, Folke F, on behalf of the
2		International Liaison Committee on Resuscitation BLS Task Force. Drones delivering
3		automated external defibrillators for out-of-hospital cardiac arrest: A scoping review.
4		Resuscitation Plus. 2025;21:100841. doi: https://doi.org/10.1016/j.resplu.2024.100841
5	72.	Kollander LJ, Folke F, Bray J, on behalf of the International Liaison Committee on
6		Resuscitation BLS Task Force. Drones delivering automated external defibrillators for
7		out-of-hospital cardiac arrest Task Force Synthesis of a Scoping Review.
8		https://costr.ilcor.org/document/drone-aeds-bls-tf-scr. Accessed January 10, 2025.
9	73.	Yukun J, Yanmang S, Yan W, Bei W, Shurui F. Improved immune algorithm for sudden
10		cardiac death first aid drones site selection. International journal of medical informatics.
11		2023;173:105025. doi: https://dx.doi.org/10.1016/j.ijmedinf.2023.105025
12	74.	Starks MA, Chu J, Leung KB, Blewer AL, Simmons D, Hansen CM, Joiner A, Cabañas
13		JG, Harmody MR, Nelson RD. Combinations of first responder and drone delivery to
14		achieve 5-minute AED deployment in OHCA. JACC: Advances. 2024;3:101033.
15	75.	Scholz SS, Wähnert D, Jansen G, Sauzet O, Latka E, Rehberg S, Thies K-C. AED
16		delivery at night-Can drones do the Job? A feasibility study of unmanned aerial systems
17		to transport automated external defibrillators during night-time. Resuscitation.
18		2023;185:109734.
19	76.	Schierbeck S, Nord A, Svensson L, Ringh M, Nordberg P, Hollenberg J, Lundgren P,
20		Folke F, Jonsson M, Forsberg S, et al. Drone delivery of automated external defibrillators
21		compared with ambulance arrival in real-life suspected out-of-hospital cardiac arrests: a
22		prospective observational study in Sweden. Lancet Digit Health. 2023;5:e862-e871. doi:
23		10.1016/S2589-7500(23)00161-9

1	77.	Ren X, Li R. The Location Problem of Medical Drone Vertiports for Emergency Cardiac
2		Arrest Needs. Sustainability. 2023;16:44.
3	78.	Purahong B, Anuwongpinit T, Juhong A, Kanjanasurat I, Pintaviooj C. Medical Drone
4		Managing System for Automated External Defibrillator Delivery Service. Drones.
5		2022;6:93.
6	79.	Leith T, Correll JA, Davidson EE, Gottula AL, Majhail NK, Mathias EJ, Pribble J,
7		Roberts NB, Scott IG, Cranford JA, et al. Bystander interaction with a novel
8		multipurpose medical drone: A simulation trial. Resusc Plus. 2024;18:100633. doi:
9		10.1016/j.resplu.2024.100633
10	80.	Frigstad L, Furu V, Svenkerud SK, Claesson A, Andersson H, Granberg TA. Joint
11		planning of drones and volunteers in emergency response to out-of-hospital cardiac
12		arrest. Computers & Industrial Engineering. 2023;185:109648.
13	81.	Fischer P, Rohrer U, Nurnberger P, Manninger M, Scherr D, von Lewinski D, Zirlik A,
14		Wankmuller C, Kolesnik E. Automated external defibrillator delivery by drone in
15		mountainous regions to support basic life support - A simulation study. Resusc Plus.
16		2023;14:100384. doi: 10.1016/j.resplu.2023.100384
17	82.	Davidson EE, Correll JA, Gottula A, Hopson LR, Leith TB, Majhail NK, Mathias EJ,
18		Pribble JM, Roberts NB, Scott IG, et al. Impact of drone-specific dispatch instructions on
19		the safety and efficacy of drone-delivered emergency medical treatments: A randomized
20		simulation pilot study. Resusc Plus. 2024;18:100652. doi: 10.1016/j.resplu.2024.100652
21	83.	Starks MA, Blewer AL, Chow C, Sharpe E, Van Vleet L, Arnold E, Buckland DM,
22		Joiner A, Simmons D, Green CL, et al. Incorporation of Drone Technology Into the
23		Chain of Survival for OHCA: Estimation of Time Needed for Bystander Treatment of

1		OHCA and CPR Performance. Circ Cardiovasc Qual Outcomes. 2024;17:e010061. doi:
2		10.1161/CIRCOUTCOMES.123.010061
3	84.	Drennan IR, Lin S, Thorpe KE, Morrison LJ. The effect of time to defibrillation and
4		targeted temperature management on functional survival after out-of-hospital cardiac
5		arrest. Resuscitation. 2014;85:1623-1628. doi: 10.1016/j.resuscitation.2014.07.010
6	85.	De Maio VJ, Stiell IG, Wells GA, Spaite DW. Optimal defibrillation response intervals
7		for maximum out-of-hospital cardiac arrest survival rates. Annals of Emergency
8		Medicine. 2003;42:242-250. doi: https://doi.org/10.1067/mem.2003.266
9	86.	Nehme Z, Andrew E, Bernard S, Haskins B, Smith K. Trends in survival from out-of-
10		hospital cardiac arrests defibrillated by paramedics, first responders and bystanders.
11		Resuscitation. 2019;143:85-91. doi: 10.1016/j.resuscitation.2019.08.018
12	87.	O'Callaghan PA, Swampillai J, Stiles MK. Availability of automated external
13		defibrillators in Hamilton, New Zealand. NZ Med J. 2019;132:75-82.
14	88.	Lac D, Wolters MK, Leung KHB, MacInnes L, Clegg GR. Factors affecting public
15		access defibrillator placement decisions in the United Kingdom: A survey study. Resusc
16		Plus. 2023;13:100348. doi: 10.1016/j.resplu.2022.100348
17	89.	Fortington LV, Bekker S, Finch CF. Integrating and maintaining automated external
18		defibrillators and emergency planning in community sport settings: a qualitative case
19		study. Emerg Med J. 2020;37:617-622. doi: 10.1136/emermed-2019-208781
20	90.	Oonyu L, Perkins GD, Smith CM, Vaillancourt C, Olasveengen TM, Bray JE, on behalf
21		of the International Liaison Committee on Resuscitation BLS Task Force. The impact of
22		locked cabinets for automated external defibrillators (AEDs) on cardiac arrest and AED
23		outcomes: A scoping review. Resusc Plus. 2024;20:100791. doi:
24		10.1016/j.resplu.2024.100791

1	91.	Bray J, Oonyu L, Perkins G, Smith C, Vaillancourt C, Olasveengen T, on behalf of the
2		International Liaison Committee on Resuscitation BLS Life Support Task Force.
3		Accessibility of AEDs in locked cabinets: Task Force Synthesis of a Scoping Review.
4		https://costr.ilcor.org/document/aed-accessibility-benefits-and-harms-if-locked-aed-
5		cabinets-scoping-review-bls-2123-tf-scr Accessed January 10, 2025.
6	92.	Uhm TH, Kim JH. Factors affecting delivery time of public access defibrillator in
7		apartment houses. Indian Journal of Public Health Research and Development.
8		2018;9(9):534-540.
9	93.	Telec W, Baszko A, Dabrowski M, Dabrowska A, Sip M, Puslecki M, Klosiewicz T,
10		Potyrala P, Jurczyk W, Maciejewski A, et al. Automated external defibrillator use in
11		public places: a study of acquisition time. Kardiologia polska. 2018;76:181-185. doi:
12		https://dx.doi.org/10.5603/KP.a2017.0199
13	94.	Salerno J, Willson C, Weiss L, Salcido D. Myth of the stolen AED. Resuscitation.
14		2019;140:1.
15	95.	Peberdy MA, Ottingham LV, Groh WJ, Hedges J, Terndrup TE, Pirrallo RG, Mann NC,
16		Sehra R. Adverse events associated with lay emergency response programs: the public
17		access defibrillation trial experience. Resuscitation. 2006;70:59-65.
18	96.	Page G, Bray J. Unlocking the key to increasing survival from out-of-hospital cardiac
19		arrest - 24/7 accessible AEDs. Resuscitation. 2024:110227.
20	97.	Ludgate MB, Kern KB, Bobrow BJ, Ewy GA. Donating automated external defibrillators
21		may not be enough. Circulation Conference: American Heart Association. 2012;126.
22	98.	Benvenuti C, Burkart R, Mauri R. Public defibrillators and vandalism: Myth or reality?
23		Resuscitation. 2013;1):S69.

1	99.	Cheema K, O'Connell D, Herz N, Adebayo A, Thorpe J, Benson-Clarke A, Perkins G.
2		The influence of locked automated external defibrillators (AEDs) cabinets on the rates of
3		vandalism and theft. Resuscitation. 2022;175(Supplement 1):S80.
4	100.	Brugada R, Morales A, Ramos R, Heredia J, De Morales ER, Batlle P. Girona, cardio-
5		protected territory. Resuscitation. 2014;1):S57.
6	101.	NG JSY, HO, R.J.S., YU, J, NG, Y.Y. Factors Influencing Success and Safety of AED
7		Retrieval in out of Hospital Cardiac Arrests in Singapore. The Korean Journal of
8		Emergency Medical Services 2022;26:97-111. doi: doi:10.14408/KJEMS.2022.26.2.097
9	102.	Didcoe M, ; Pavey-Smith, C.; Finn, J.; Belcher, J. Locked vs. unlocked AED cabinets:
10		The Western Australian perspective on improving accessibility and outcomes.
11		Resuscitation Plus. 2024;20:100807. doi: https://doi.org/10.1016/j.resplu.2024.100807
12	103.	Bray JE, Perkins GD. Reply to locked vs. unlocked AED cabinets: The Western
13		Australian perspective on improving accessibility and outcomes. Resuscitation Plus.
14		2024:100838. doi: https://doi.org/10.1016/j.resplu.2024.100838
15	104.	Brooks SC, Clegg GR, Bray J, Deakin CD, Perkins GD, Ringh M, Smith CM, Link MS,
16		Merchant RM, Pezo-Morales J, et al. Optimizing outcomes after out-of-hospital cardiac
17		arrest with innovative approaches to public-access defibrillation: A scientific statement
18		from the International Liaison Committee on Resuscitation. Resuscitation. 2022;172:204-
19		228. doi: 10.1016/j.resuscitation.2021.11.032
20	105.	Brooks SC, Clegg GR, Bray J, Deakin CD, Perkins GD, Ringh M, Smith CM, Link MS,
21		Merchant RM, Pezo-Morales J, et al. Optimizing outcomes after out-of-hospital cardiac
22		arrest with innovative approaches to public-access defibrillation: A scientific statement
23		from the International Liaison Committee on Resuscitation. Resuscitation. 2022;172:204-
24		228. doi: 10.1016/j.resuscitation.2021.11.032

1	106.	Bray J, Dassanayake V, Considine J, Scholefield B, Olasveengen TM, on behalf of the
2		International Liaison Committee on Resuscitation Basic Life Support Task Force and
3		Paediatric Life Support Task Forces. Starting CPR (ABC vs. CAB) for Cardiac Arrest in
4		Adults and Children Consensus on Science with Treatment Recommendations.
5		https://costr.ilcor.org/document/starting-cpr-abc-vs-cab-pls-4070-02-tf-sr. Accessed
6		January 10, 2025.
7	107.	Scholefield et al. Pediatric Advanced Life Support: 2025 International Consensus on
8		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
9		Treatment Recommendations. Circulation. 2025:placeholder.
10	108.	Bray et al. Starting cardiopulmonary resuscitation (CPR): compression or
11		airway/breathing first (CAB v ABC) (CRD42024583890). TBD. 2025:placeholder.
12	109.	Bray J, Dassanayake V, Considine J, Scholefield B, Olasveengen TM, on behalf of the
13		International Liaison Committee on Resuscitation Basic Life Support Task Force and
14		Paediatric Life Support Task Forces. Starting CPR (ABC vs. CAB) for Cardiac Arrest in
15		Adults and Children Consensus on Science with Treatment Recommendations.
16		https://costr.ilcor.org/document/starting-cpr-abc-vs-cab-bls-2201-tf-sr. Accessed January
17		10, 2025.
18	110.	Suppan L, Jampen L, Siebert JN, Zund S, Stuby L, Ozainne F. Impact of Two
19		Resuscitation Sequences on Alveolar Ventilation during the First Minute of Simulated
20		Pediatric Cardiac Arrest: Randomized Cross-Over Trial. Healthcare (Basel).
21		2022;10:2451. doi: 10.3390/healthcare10122451
22	111.	Suppan L, Jampen L, Siebert JN, Zund S, Stuby L, Ozainne F. Correction: Suppan et al.
23		Impact of Two Resuscitation Sequences on Alveolar Ventilation during the First Minute

1		of Simulated Pediatric Cardiac Arrest: Randomized Cross-Over Trial. Healthcare 2022,
2		10, 2451. Healthcare (Basel). 2023;11:1799. doi: 10.3390/healthcare11121799
3	112.	Kobayashi M, Fujiwara A, Morita H, Nishimoto Y, Mishima T, Nitta M, Hayashi T,
4		Hotta T, Hayashi Y, Hachisuka E, et al. A manikin-based observational study on
5		cardiopulmonary resuscitation skills at the Osaka Senri medical rally. Resuscitation.
6		2008;78:333-339. doi: https://doi.org/10.1016/j.resuscitation.2008.03.230
7	113.	Lubrano R, Cecchetti C, Bellelli E, Gentile I, Loayza Levano H, Orsini F, Bertazzoni G,
8		Messi G, Rugolotto S, Pirozzi N, et al. Comparison of times of intervention during
9		pediatric CPR maneuvers using ABC and CAB sequences: a randomized trial.
10		Resuscitation. 2012;83:1473-1477. doi: 10.1016/j.resuscitation.2012.04.011
11	114.	Marsch S, Tschan F, Semmer NK, Zobrist R, Hunziker PR, Hunziker S. ABC versus
12		CAB for cardiopulmonary resuscitation: a prospective, randomized simulator-based trial.
13		Swiss Med Wkly. 2013;143:w13856. doi: 10.4414/smw.2013.13856
14	115.	Sekiguchi H, Kondo Y, Kukita I. Verification of changes in the time taken to initiate
15		chest compressions according to modified basic life support guidelines. Am J Emerg
16		Med. 2013;31:1248-1250. doi: 10.1016/j.ajem.2013.02.047
17	116.	Travers AH, Perkins GD, Berg RA, Castren M, Considine J, Escalante R, Gazmuri RJ,
18		Koster RW, Lim SH, Nation KJ, et al. Part 3: Adult Basic Life Support and Automated
19		External Defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation
20		and Emergency Cardiovascular Care Science With Treatment Recommendations.
21		Circulation. 2015;132:S51-83. doi: 10.1161/CIR.000000000000272
22	117.	Perkins GD, Travers AH, Berg RA, Castren M, Considine J, Escalante R, Gazmuri RJ,
23		Koster RW, Lim SH, Nation KJ, et al. Part 3: Adult basic life support and automated
24		external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation

1		and Emergency Cardiovascular Care Science with Treatment Recommendations.
2		Resuscitation. 2015;95:e43-69. doi: 10.1016/j.resuscitation.2015.07.041
3	118.	Pasupula DK, Bhat A, Siddappa Malleshappa SK, Munir MB, Barakat A, Jain S, Wang
4		NC, Saba S, Bhonsale A. Impact of Change in 2010 American Heart Association
5		Cardiopulmonary Resuscitation Guidelines on Survival After Out-of-Hospital Cardiac
6		Arrest in the United States. Circulation: Arrhythmia and Electrophysiology.
7		2020;13:e007843. doi: 10.1161/CIRCEP.119.007843
8	119.	Garza AG, Gratton MC, Salomone JA, Lindholm D, McElroy J, Archer R. Improved
9		patient survival using a modified resuscitation protocol for out-of-hospital cardiac arrest.
10		Circulation. 2009;119:2597-2605. doi: 10.1161/CIRCULATIONAHA.108.815621
11	120.	Mallikethi-Reddy S, Briasoulis A, Akintoye E, Jagadeesh K, Brook RD, Rubenfire M,
12		Afonso L, Grines CL. Incidence and Survival After In-Hospital Cardiopulmonary
13		Resuscitation in Nonelderly Adults: US Experience, 2007 to 2012. Circ Cardiovasc Qual
14		Outcomes. 2017;10. doi: 10.1161/circoutcomes.116.003194
15	121.	Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, Chen WJ. Outcomes of
16		adults with in-hospital cardiac arrest after implementation of the 2010 resuscitation
17		guidelines. Int J Cardiol. 2017;249:214-219. doi: 10.1016/j.ijcard.2017.09.008
18	122.	Nassar BS, Kerber R. Improving CPR performance. Chest. 2017;152:1061-1069.
19	123.	Goh JL, Pek PP, Fook-Chong SMC, Ho AFW, Siddiqui FJ, Leong BS-H, Mao DRH, Ng
20		W, Tiah L, Chia MY-C, et al. Impact of time-to-compression on out-of-hospital cardiac
21		arrest survival outcomes: A national registry study. Resuscitation. 2023;190:109917. doi:
22		https://doi.org/10.1016/j.resuscitation.2023.109917
23	124.	Nehme Z, Cash R, Dicker B, de Caen A, Perkins G, Dewan M, Dassanayake V, Raffay
24		V, Vaillancourt C, Olasveengen T, et al. Chest compression-to-ventilation ratios for

1		cardiopulmonary resuscitation A Consensus on Science with Treatment
2		Recommendations. https://costr.ilcor.org/document/chest-compression-to-ventilation-
3		ratios-for-cardiopulmonary-resuscitation-bls-2202-tf-sr. Accessed January 10, 2025.
4	125.	Olasveengen TM, Vik E, Kuzovlev A, Sunde K. Effect of implementation of new
5		resuscitation guidelines on quality of cardiopulmonary resuscitation and survival.
6		Resuscitation. 2009;80:407-411. doi: 10.1016/j.resuscitation.2008.12.005
7	126.	Kudenchuk PJ, Redshaw JD, Stubbs BA, Fahrenbruch CE, Dumas F, Phelps R,
8		Blackwood J, Rea TD, Eisenberg MS. Impact of changes in resuscitation practice on
9		survival and neurological outcome after out-of-hospital cardiac arrest resulting from
10		nonshockable arrhythmias. Circulation. 2012;125:1787-1794. doi:
11		10.1161/CIRCULATIONAHA.111.064873
12	127.	Steinmetz J, Barnung S, Nielsen SL, Risom M, Rasmussen LS. Improved survival after
13		an out-of-hospital cardiac arrest using new guidelines. Acta Anaesthesiol Scand.
14		2008;52:908-913. doi: 10.1111/j.1399-6576.2008.01657.x
15	128.	Sayre MR, Cantrell SA, White LJ, Hiestand BC, Keseg DP, Koser S. Impact of the 2005
16		American Heart Association cardiopulmonary resuscitation and emergency
17		cardiovascular care guidelines on out-of-hospital cardiac arrest survival. Prehosp Emerg
18		Care. 2009;13:469-477. doi: 10.1080/10903120903144965
19	129.	Hostler D, Rittenberger JC, Roth R, Callaway CW. Increased chest compression to
20		ventilation ratio improves delivery of CPR. Resuscitation. 2007;74:446-452. doi:
21		10.1016/j.resuscitation.2007.01.022
22	130.	Deasy C, Bray JE, Smith K, Wolfe R, Harriss LR, Bernard SA, Cameron P. Cardiac
23		arrest outcomes before and after the 2005 resuscitation guidelines implementation:

1 Evidence of improvement? *Resuscitation*. 2011;82:984-988. doi:

- 2 10.1016/j.resuscitation.2011.04.005
- 3 131. Berdowski J, ten Haaf M, Tijssen JG, Chapman FW, Koster RW. Time in recurrent
- 4 ventricular fibrillation and survival after out-of-hospital cardiac arrest. *Circulation*.
- 5 2010;122:1101-1108. doi: 10.1161/CIRCULATIONAHA.110.958173
- Reynolds JC, Raffay V, Lang E, Morley PT, Nation K. When should chest compressions
 be paused to analyze the cardiac rhythm? A systematic review and meta-analysis.
- 8 *Resuscitation*. 2015;97:38-47. doi: <u>https://doi.org/10.1016/j.resuscitation.2015.09.385</u>
- 9 133. Smyth MA, Nishiyama C, Singh B, Olasveengen TM, Bray JE, on behalf of the
- 10 International Liaison Committee on Resuscitation Basic Life Support Task Force.
- 11 Duration of CPR cycles Consensus on Science with Treatment Recommendations.
- https://costr.ilcor.org/document/duration-of-cpr-cyclesbls-2212-tf-sr. Accessed January
 10, 2025.
- 14 134. Wik L, Hansen TB, Fylling F, Steen T, Vaagenes P, Auestad BH, Steen PA. Delaying
- 15 defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital
- ventricular fibrillation: a randomized trial. *JAMA : the journal of the American Medical Association*. 2003;289:1389-1395. doi: 10.1001/jama.289.11.1389
- 18 135. Baker PW, Conway J, Cotton C, Ashby DT, Smyth J, Woodman RJ, Grantham H.
- 19 Defibrillation or cardiopulmonary resuscitation first for patients with out-of-hospital
- 20 cardiac arrests found by paramedics to be in ventricular fibrillation? A randomised
- 21 control trial. *Resuscitation*. 2008;79:424-431. doi: 10.1016/j.resuscitation.2008.07.017
- 22 136. Nehme Z, Cash R, Dicker B, de Caen A, Perkins G, Dewan M, Dassanayake V, Raffay
- 23 V, Vaillancourt C, Olasveengen T, et al. Continuous chest compressions versus standard
- 24 cardiopulmonary resuscitation for EMS: A Consensus on Science with Treatment

1		Recommendations. https://costr.ilcor.org/document/continuous-chest-compressions-ccc-
2		versus-standard-cpr-for-ems-bls-2221-tf-sr. Accessed January 10, 2025.
3	137.	Nichol G, Leroux B, Wang H, Callaway CW, Sopko G, Weisfeldt M, Stiell I, Morrison
4		LJ, Aufderheide TP, Cheskes S, et al. Trial of Continuous or Interrupted Chest
5		Compressions during CPR. N Engl J Med. 2015;373:2203-2214. doi:
6		10.1056/NEJMoa1509139
7	138.	Bobrow BJ, Clark LL, Ewy GA, Chikani V, Sanders AB, Berg RA, Richman PB, Kern
8		KB. Minimally interrupted cardiac resuscitation by emergency medical services for out-
9		of-hospital cardiac arrest. JAMA : the journal of the American Medical Association.
10		2008;299:1158-1165. doi: https://dx.doi.org/10.1001/jama.299.10.1158
11	139.	Grunau B, Singer J, Lee T, Scheuermeyer FX, Straight R, Schlamp R, Wand R, Dick
12		WF, Connolly H, Pennington S, et al. A Local Sensitivity Analysis of the Trial of
13		Continuous or Interrupted Chest Compressions during Cardiopulmonary Resuscitation: Is
14		a Local Protocol Change Required? Cureus. 2018;10:e3386. doi: 10.7759/cureus.3386
15	140.	Schmicker RH, Nichol G, Kudenchuk P, Christenson J, Vaillancourt C, Wang HE,
16		Aufderheide TP, Idris AH, Daya MR. CPR compression strategy 30:2 is difficult to
17		adhere to, but has better survival than continuous chest compressions when done
18		correctly. Resuscitation. 2021;165:31-37. doi: 10.1016/j.resuscitation.2021.05.027
19	141.	Idris AH, Aramendi Ecenarro E, Leroux B, Jaureguibeitia X, Yang BY, Shaver S, Chang
20		MP, Rea T, Kudenchuk P, Christenson J, et al. Bag-Valve-Mask Ventilation and Survival
21		From Out-of-Hospital Cardiac Arrest: A Multicenter Study. Circulation. 2023;148:1847-
22		1856. doi: 10.1161/circulationaha.123.065561
23	142.	Christenson J, Andrusiek D, Everson-Stewart S, Kudenchuk P, Hostler D, Powell J,
24		Callaway CW, Bishop D, Vaillancourt C, Davis D, et al. Chest compression fraction

1		determines survival in patients with out-of-hospital ventricular fibrillation. Circulation.
2		2009;120:1241-1247. doi: 10.1161/CIRCULATIONAHA.109.852202
3	143.	Berg RA, Sanders AB, Kern KB, Hilwig RW, Heidenreich JW, Porter ME, Ewy GA.
4		Adverse hemodynamic effects of interrupting chest compressions for rescue breathing
5		during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
6		Circulation. 2001;104:2465-2470. doi: 10.1161/hc4501.098926
7	144.	Bray J, Cash R, Nehme Z, de Caen A, Perkins G, Dewan M, Dicker B, Dassanayake V,
8		Raffay V, Vaillancourt C, et al. Continuous chest compressions versus standard
9		cardiopulmonary resuscitation for in-hospital CPR: A systematic review Consensus on
10		Science with Treatment Recommendations. https://costr.ilcor.org/document/continuous-
11		chest-compressions-ccc-versus-standard-cpr-for-in-hospital-cpr-bls-2222-tf-sr. Accessed
12		January 10, 2025.
13	145.	Lee IH, How CK, Lu WH, Tzeng YM, Chen YJ, Chern CH, Kao WF, Yen DH, Huang
14		MS. Improved survival outcome with continuous chest compressions with ventilation
15		compared to 5:1 compressions-to-ventilations mechanical cardiopulmonary resuscitation
16		in out-of-hospital cardiac arrest. J Chin Med Assoc. 2013;76:158-163. doi:
17		10.1016/j.jcma.2013.01.001
18	146.	Raffay V, Olasveengen TM, Bray J, on behalf of the International Liaison Committee on
19		Resuscitation BLS Life Support Task Force. Hand position during compressions
20		Consensus on Science with Treatment Recommendations.
21		https://costr.ilcor.org/document/hand-position-during-compressions-bls-2502-tf-sr.
22		Accessed January 10, 2025.
23	147.	Orlowski JP. Optimum position for external cardiac compression in infants and young
24		children. Ann Emerg Med. 1986;15:667-673. doi: 10.1016/s0196-0644(86)80423-1

1	148.	Qvigstad E, Kramer-Johansen J, Tomte O, Skalhegg T, Sorensen O, Sunde K,
2		Olasveengen TM. Clinical pilot study of different hand positions during manual chest
3		compressions monitored with capnography. Resuscitation. 2013;84:1203-1207. doi:
4		10.1016/j.resuscitation.2013.03.010
5	149.	Cha KC, Kim HJ, Shin HJ, Kim H, Lee KH, Hwang SO. Hemodynamic effect of external
6		chest compressions at the lower end of the sternum in cardiac arrest patients. J Emerg
7		Med. 2013;44:691-697. doi: 10.1016/j.jemermed.2012.09.026
8	150.	Park M, Oh WS, Chon SB, Cho S. Optimum Chest Compression Point for
9		Cardiopulmonary Resuscitation in Children Revisited Using a 3D Coordinate System
10		Imposed on CT: A Retrospective, Cross-Sectional Study. Pediatr Crit Care Med.
11		2018;19:e576-e584. doi: 10.1097/PCC.000000000001679
12	151.	Papadimitriou P, Chalkias A, Mastrokostopoulos A, Kapniari I, Xanthos T. Anatomical
13		structures underneath the sternum in healthy adults and implications for chest
14		compressions. Am J Emerg Med. 2013;31:549-555. doi: 10.1016/j.ajem.2012.10.023
15	152.	Nestaas S, Stensaeth KH, Rosseland V, Kramer-Johansen J. Radiological assessment of
16		chest compression point and achievable compression depth in cardiac patients. Scand J
17		Trauma Resusc Emerg Med. 2016;24:54. doi: 10.1186/s13049-016-0245-0
18	153.	Lee J, Oh J, Lim TH, Kang H, Park JH, Song SY, Shin GH, Song Y. Comparison of
19		optimal point on the sternum for chest compression between obese and normal weight
20		individuals with respect to body mass index, using computer tomography: A retrospective
21		study. Resuscitation. 2018;128:1-5. doi: 10.1016/j.resuscitation.2018.04.023
22	154.	Kwon MJ, Kim EH, Song IK, Lee JH, Kim HS, Kim JT. Optimizing Prone
23		Cardiopulmonary Resuscitation: Identifying the Vertebral Level Correlating With the

1		Largest Left Ventricle Cross-Sectional Area via Computed Tomography Scan. Anesth
2		Analg. 2017;124:520-523. doi: 10.1213/ANE.000000000001369
3	155.	Holmes S, Kirkpatrick ID, Zelop CM, Jassal DS. MRI evaluation of maternal cardiac
4		displacement in pregnancy: implications for cardiopulmonary resuscitation. Am J Obstet
5		Gynecol. 2015;213:401 e401-405. doi: 10.1016/j.ajog.2015.05.018
6	156.	Cha KC, Kim YJ, Shin HJ, Cha YS, Kim H, Lee KH, Kwon W, Hwang SO. Optimal
7		position for external chest compression during cardiopulmonary resuscitation: an analysis
8		based on chest CT in patients resuscitated from cardiac arrest. Emerg Med J.
9		2013;30:615-619. doi: 10.1136/emermed-2012-201556
10	157.	Saksobhavivat N, Phattharapornjaroen P, Suksukon P, Atiksawedparit P,
11		Chalermdamrichai P, Saelee R, Sanguanwit P. Optimal chest compression position for
12		cardiopulmonary resuscitation determined by computed tomography image: retrospective
13		cross-sectional analysis. Sci Rep. 2023;13:22763. doi: 10.1038/s41598-023-49486-3
14	158.	Park JB, Song IK, Lee JH, Kim EH, Kim HS, Kim JT. Optimal Chest Compression
15		Position for Patients With a Single Ventricle During Cardiopulmonary Resuscitation.
16		Pediatr Crit Care Med. 2016;17:303-306. doi: 10.1097/PCC.000000000000658
17	159.	Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D,
18		Bhanji F, Andersen LW, Avis SR, et al. 2021 International Consensus on
19		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
20		Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
21		Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task
22		Forces; and the COVID-19 Working Group. Resuscitation. 2021;169:229-311. doi:
23		10.1016/j.resuscitation.2021.10.040

1	160.	Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D,
2		Bhanji F, Andersen LW, Avis SR, et al. 2021 International Consensus on
3		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
4		Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
5		Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task
6		Forces; and the COVID-19 Working Group. Circulation. 2022;145:e645-e721. doi:
7		10.1161/CIR.00000000001017
8	161.	Norii et al. Head-up cardiopulmonary resuscitation (CPR): A systematic review
9		(CRD42024541714). TBD. 2025:Placeholder.
10	162.	Norii T, Lukas G, Samantaray A, Olasveengen TM, Bray JE, for the International Liaison
11		Committee on Resuscitation (ILCOR) Basic Life Support Task Force. Effects of Head-
12		Up CPR on Survival and Neurological outcomes: A Consensus on Science with
13		Treatment Recommendations. https://costr.ilcor.org/document/effects-of-head-up-cpr-on-
14		survival-and-neurological-outcomes-bls-2020-tfsr. Accessed January 10, 2025.
15	163.	Bachista KM, Moore JC, Labarere J, Crowe RP, Emanuelson LD, Lick CJ, Debaty GP,
16		Holley JE, Quinn RP, Scheppke KA, et al. Survival for Nonshockable Cardiac Arrests
17		Treated With Noninvasive Circulatory Adjuncts and Head/Thorax Elevation. Crit Care
18		Med. 2024;52:170-181. doi: 10.1097/CCM.0000000000006055
19	164.	Moore JC, Pepe PE, Scheppke KA, Lick C, Duval S, Holley J, Salverda B, Jacobs M,
20		Nystrom P, Quinn R, et al. Head and thorax elevation during cardiopulmonary
21		resuscitation using circulatory adjuncts is associated with improved survival.
22		Resuscitation. 2022;179:9-17. doi: 10.1016/j.resuscitation.2022.07.039
23	165.	Pepe PE, Scheppke KA, Antevy PM, Crowe RP, Millstone D, Coyle C, Prusansky C,
24		Garay S, Ellis R, Fowler RL, et al. Confirming the Clinical Safety and Feasibility of a

1		Bundled Methodology to Improve Cardiopulmonary Resuscitation Involving a Head-
2		Up/Torso-Up Chest Compression Technique. Crit Care Med. 2019;47:449-455. doi:
3		10.1097/CCM.00000000003608
4	166.	Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM,
5		Olinger ML, Holcomb RG, Tupper DE, Yannopoulos D, et al. Standard cardiopulmonary
6		resuscitation versus active compression-decompression cardiopulmonary resuscitation
7		with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a
8		randomised trial. Lancet. 2011;377:301-311. doi: 10.1016/S0140-6736(10)62103-4
9	167.	Kudenchuk PJ, Brown SP, Daya M, Rea T, Nichol G, Morrison LJ, Leroux B,
10		Vaillancourt C, Wittwer L, Callaway CW, et al. Amiodarone, Lidocaine, or Placebo in
11		Out-of-Hospital Cardiac Arrest. N Engl J Med. 2016;374:1711-1722. doi:
12		10.1056/NEJMoa1514204
13	168.	Aufderheide TP, Nichol G, Rea TD, Brown SP, Leroux BG, Pepe PE, Kudenchuk PJ,
14		Christenson J, Daya MR, Dorian P, et al. A trial of an impedance threshold device in out-
15		of-hospital cardiac arrest. N Engl J Med. 2011;365:798-806. doi:
16		10.1056/NEJMoa1010821
17	169.	Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J,
18		Cheng A, Drennan IR, Liley HG, et al. 2022 International Consensus on
19		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
20		Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
21		Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and
22		Teams; and First Aid Task Forces. Circulation. 2022;146:e483-e557. doi:
23		10.1161/CIR.000000000001095

1	170.	Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J,
2		Cheng A, Drennan IR, Liley HG, et al. 2022 International Consensus on
3		Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With
4		Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
5		Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and
6		Teams; and First Aid Task Forces. Pediatrics. 2023;151. doi: 10.1542/peds.2022-060463
7	171.	Olasveengen T, Semeraro F, Bray J, Smyth M, Vaillancourt C, Kudenchuk P, Masterson
8		S, Johnson N, Norii T, Nehme Z, et al. Minimizing pauses: systematic review.
9		https://costr.ilcor.org/document/bls-358-minimizing-pauses. Accessed January 10, 2025.
10	172.	Dewolf P, Wauters L, Clarebout G, Van Den Bempt S, Uten T, Desruelles D, Verelst S.
11		Assessment of chest compression interruptions during advanced cardiac life support.
12		Resuscitation. 2021;165:140-147. doi: 10.1016/j.resuscitation.2021.06.022
13	173.	Lyngby RM, Händel MN, Christensen AM, Nikoletou D, Folke F, Christensen HC,
14		Barfod C, Quinn T. Effect of real-time and post-event feedback in out-of-hospital cardiac
15		arrest attended by EMS — A systematic review and meta-analysis. Resuscitation Plus.
16		2021;6:100101. doi: https://doi.org/10.1016/j.resplu.2021.100101
17	174.	Leo WZ, Chua D, Tan HC, Ho VK. Chest compression quality and patient outcomes with
18		the use of a CPR feedback device: A retrospective study. Scientific Reports.
19		2023;13:19852. doi: 10.1038/s41598-023-46862-x
20	175.	Iversen BN, Meilandt C, Væggemose U, Terkelsen CJ, Kirkegaard H, Fjølner J. Pre-
21		charging the defibrillator before rhythm analysis reduces hands-off time in patients with
22		out-of-hospital cardiac arrest with shockable rhythm. Resuscitation. 2021;169:23-30. doi:
23		10.1016/j.resuscitation.2021.09.037

1	176.	Holt J, Ward A, Mohamed TY, Chukowry P, Grolmusova N, Couper K, Morley P,
2		Perkins GD. The optimal surface for delivery of CPR: A systematic review and meta-
3		analysis. Resuscitation. 2020;155:159-164. doi: 10.1016/j.resuscitation.2020.07.020
4	177.	Dewan M, Schachna E, Eastwood K, Perkins G, Bray J, International Liaison Committee
5		on Resuscitation Basic Life Support Task F. The optimal surface for delivery of CPR: An
6		updated systematic review and meta-analysis. Resusc Plus. 2024;19:100718. doi:
7		10.1016/j.resplu.2024.100718
8	178.	Dewan M, Perkins G, Schachna E, Eastwood K, Smyth M, Olasveengen TM, Bray J, on
9		behalf of the International Liaison Committee on Resuscitation Basic Life Support Task
10		Force. Optimal surface for CPR: An Updated Systematic Review and Meta-analysis.
11		Consensus on Science with Treatment Recommendations. Available from:
12		https://costr.ilcor.org/document/firm-surface-for-cpr-an-updated-systematic-review-bls-
13		<u>2510</u> . Accessed January 10, 2025.
14	179.	Masterson S, Norii T, Yabuki M, Ikeyama T, Nehme Z, Bray J. Real-time feedback for
15		CPR quality - A scoping review. Resuscitation Plus. 2024;19:100730. doi:
16		https://doi.org/10.1016/j.resplu.2024.100730
17	180.	Masterson S, Norii T, Ikeyama T, Nehme Z, Considine J, Olasveengen T, Bray J, on
18		behalf of the International Liaison Committee on Resuscitation Basic Life Support Task
19		Force. Real-Time Feedback for Cardiopulmonary Resuscitation: Task Force Synthesis of
20		a Scoping Review. https://costr.ilcor.org/document/real-time-feedback-for-cpr-quality-
21		scoping-review-bls-2511-scr. Accessed January 10, 2025.
22	181.	Ristagno G, Nishiyama C, Ikeyama T, Bray J, Smyth M, Kudenchuck P, Johnson N,

- 1 Treatment Recommendations. <u>https://costr.ilcor.org/document/passive-ventilation-bls-</u>
- 2 <u>352</u>. Accessed January 10, 2025.
- 3 182. Benoit JL, Lakshmanan S, Farmer SJ, Sun Q, Gray JJ, Sams W, Tadesse DG, McMullan
- 4 JT. Ventilation rates measured by capnography during out-of-hospital cardiac arrest
- 5 resuscitations and their association with return of spontaneous circulation. *Resuscitation*.
- 6 2023;182:109662. doi: <u>https://doi.org/10.1016/j.resuscitation.2022.11.028</u>
- 7 183. Vissers G, Duchatelet C, Huybrechts SA, Wouters K, Hachimi-Idrissi S, Monsieurs KG.
- 8 The effect of ventilation rate on outcome in adults receiving cardiopulmonary
- 9 resuscitation. *Resuscitation*. 2019;138:243-249. doi:
- 10 <u>https://doi.org/10.1016/j.resuscitation.2019.03.037</u>
- 11 184. Debaty et al. Ventilation quality feedback devices consensus on science with treatment
 recommendations: a scoping review. *TBD*. 2025:placeholder.
- 13 185. Debaty GJ, N.J.; Dewan, M,; Morrison, L.; Bray, J.; ,on behalf of the International
- 14 Liaison Committee on Resuscitation Basic Life Support Task Force. . Ventilation quality
- 15 feedback devices consensus on science with treatment recommendations Available from:
 16 http://ilcor.org.
- 17 186. Lee ED, Jang YD, Kang JH, Seo YS, Yoon YS, Kim YW, Jeong WB, Ji JG. Effect of a
- 18 Real-Time Audio Ventilation Feedback Device on the Survival Rate and Outcomes of
- 19 Patients with Out-of-Hospital Cardiac Arrest: A Prospective Randomized Controlled
- 20 Study. J Clin Med. 2023;12. doi: 10.3390/jcm12186023
- 21 187. Drennan IR, Lee M, Héroux J-P, Lee A, Riches J, Peppler J, Poitras A, Cheskes S. The
- 22 impact of real-time feedback on ventilation quality during out-of-hospital cardiac arrest:
- A before-and-after study. *Resuscitation*. 2024;204. doi:
- 24 10.1016/j.resuscitation.2024.110381

1	188.	Abella BS, Edelson DP, Kim S, Retzer E, Myklebust H, Barry AM, O'Hearn N, Hoek
2		TL, Becker LB. CPR quality improvement during in-hospital cardiac arrest using a real-
3		time audiovisual feedback system. Resuscitation. 2007;73:54-61. doi:
4		10.1016/j.resuscitation.2006.10.027
5	189.	McCarty K, Roosa J, Kitamura B, Page R, Roque P, Silver A, Spaite D, Stolz U,
6		Vadeboncoeur T, Bobrow B. Ventilation rates and tidal volume during emergency
7		department cardiac resuscitation. Resuscitation. 2012;83. doi:
8		10.1016/j.resuscitation.2012.08.114
9	190.	Lemoine F, Jost D, Tassart B, Petermann A, Lemoine S, Salome M, Frattini B, Travers S.
10		464 Evaluation of ventilation quality by basic life support teams during out-of-hospital
11		cardiac arrest : preliminary results from a prospective observational study - the vecars
12		study. Resuscitation. 2024;203:S215. doi: 10.1016/S0300-9572(24)00746-9
13	191.	Gerber S, Pourmand A, Sullivan N, Shapovalov V, Pourmand A. Ventilation assisted
14		feedback in out of hospital cardiac arrest. Am J Emerg Med. 2023;74:198.e191-198.e195.
15		doi: 10.1016/j.ajem.2023.09.047
16	192.	Charlton K, McClelland G, Millican K, Haworth D, Aitken-Fell P, Norton M. The impact
17		of introducing real time feedback on ventilation rate and tidal volume by ambulance
18		clinicians in the North East in cardiac arrest simulations. Resusc Plus. 2021;6:100130.
19		doi: 10.1016/j.resplu.2021.100130
20	193.	D'Agostino F, Agro FE, Petrosino P, Ferri C, Ristagno G. Are instructors correctly
21		gauging ventilation competence acquired by course attendees? Resuscitation.
22		2024;200:110240. doi: https://dx.doi.org/10.1016/j.resuscitation.2024.110240

1	194.	Dinh AT, Eyer X, Chauvin A, Outrey J, Vivien B, Khoury A, Plaisance P. Evaluation of
2		EOlifeX®, a Ventilation Feedback Device during cardiopulmonary resuscitation in
3		medical students training. Resuscitation. 2023;192. doi: 10.1016/s0300-9572(23)00447-1
4	195.	Gould JR, Campana L, Rabickow D, Raymond R, Partridge R. Manual ventilation quality
5		is improved with a real-time visual feedback system during simulated resuscitation. Int J
6		Emerg Med. 2020;13:18. doi: 10.1186/s12245-020-00276-y
7	196.	Heo S, Yoon SY, Kim J, Kim HS, Kim K, Yoon H, Hwang SY, Cha WC, Kim T.
8		Effectiveness of a Real-Time Ventilation Feedback Device for Guiding Adequate Minute
9		Ventilation: A Manikin Simulation Study. Medicina (Kaunas). 2020;56. doi:
10		10.3390/medicina56060278
11	197.	Khoury A, De Luca A, Sall FS, Pazart L, Capellier G. Ventilation feedback device for
12		manual ventilation in simulated respiratory arrest: a crossover manikin study. Scand J
13		Trauma Resusc Emerg Med. 2019;27:93. doi: 10.1186/s13049-019-0674-7
14	198.	Kim JW, Park SO, Lee KR, Hong DY, Baek KJ. Efficacy of Amflow®, a Real-Time-
15		Portable Feedback Device for Delivering Appropriate Ventilation in Critically Ill
16		Patients: A Randomised, Controlled, Cross-Over Simulation Study. Emerg Med Int.
17		2020;2020:5296519. doi: 10.1155/2020/5296519
18	199.	Lyngby RM, Clark L, Kjoelbye JS, Oelrich RM, Silver A, Christensen HC, Barfod C,
19		Lippert F, Nikoletou D, Quinn T, et al. Higher resuscitation guideline adherence in
20		paramedics with use of real-time ventilation feedback during simulated out-of-hospital
21		cardiac arrest: A randomised controlled trial. Resusc Plus. 2021;5:100082. doi:
22		10.1016/j.resplu.2021.100082
23	200.	Melia MR, Handbury JD, Janney J. Evaluation of ventilatory rates and the benefits of an
24		immediate feedback device with and without supplementary instruction on out-of-

1		hospital resuscitations. Academic Emergency Medicine. 2012;19:S261. doi:
2		https://dx.doi.org/10.1111/j.1553-2712.2012.01332.x
3	201.	Scott JB, Schneider JM, Schneider K, Li J. An evaluation of manual tidal volume and
4		respiratory rate delivery during simulated resuscitation. Am J Emerg Med. 2021;45:446-
5		450. doi: 10.1016/j.ajem.2020.09.091
6	202.	Wagner M, Gröpel P, Eibensteiner F, Kessler L, Bibl K, Gross IT, Berger A, Cardona FS.
7		Visual attention during pediatric resuscitation with feedback devices: a randomized
8		simulation study. Pediatr Res. 2022;91:1762-1768. doi: 10.1038/s41390-021-01653-w
9	203.	You KM, Lee C, Kwon WY, Lee JC, Suh GJ, Kim KS, Park MJ, Kim S. Real-time tidal
10		volume feedback guides optimal ventilation during simulated CPR. Am J Emerg Med.
11		2017;35:292-298. doi: 10.1016/j.ajem.2016.10.085
12	204.	Lemoine S, Jost D, Petermann A, Salome M, Tassart B, Lemoine F, Briche F, Liscia J,
13		Bon O, Travers S. 411 compliance with pediatric manual ventilation guidelines by
14		professional basic life support rescuers during out-of-hospital cardiac arrest: a simulation
15		study. Resuscitation. 2024;203:S192. doi: 10.1016/S0300-9572(24)00701-9
16	205.	Sayre MR, Koster RW, Botha M, Cave DM, Cudnik MT, Handley AJ, Hatanaka T,
17		Hazinski MF, Jacobs I, Monsieurs K, et al. Part 5: Adult basic life support: 2010
18		International Consensus on Cardiopulmonary Resuscitation and Emergency
19		Cardiovascular Care Science With Treatment Recommendations. Circulation.
20		2010;122:S298-324. doi: 10.1161/CIRCULATIONAHA.110.970996
21	206.	Koster RW, Sayre MR, Botha M, Cave DM, Cudnik MT, Handley AJ, Hatanaka T,
22		Hazinski MF, Jacobs I, Monsieurs K, et al. Part 5: Adult basic life support: 2010
23		International consensus on cardiopulmonary resuscitation and emergency cardiovascular

1 2 care science with treatment recommendations. *Resuscitation*. 2010;81 Suppl 1:e48-70. doi: 10.1016/j.resuscitation.2010.08.005

- 207. Cheskes S, Verbeek PR, Drennan IR, McLeod SL, Turner L, Pinto R, Feldman M, Davis
 M, Vaillancourt C, Morrison LJ, et al. Defibrillation Strategies for Refractory Ventricular
- 5 Fibrillation. N Engl J Med. 2022;387:1947-1956. doi: 10.1056/NEJMoa2207304
- 6 208. Stirparo et al. Impact of defibrillator pad size, orientation and position on outcome of
 7 cardiac arrest with a shockable rhythm (CRD42024512443). *TBD*. 2025:placeholder.
- 8 209. Lopez-Herce J, del Casillo J, Ristagno G, Raffay V, Semeraro F, Deakin C, Drennan I,
- 9 Acworth J, Morley P, Perkins G, et al. Pad positions and size in pedatrics: A Consensus
- 10 on Science with Treatment Recommendations. <u>https://costr.ilcor.org/document/paddle-</u>
- 11 pad-size-and-placement-in-infants-and-children-pls-4080-17-updated-systematic-review.
- 12 Accessed January 10, 2025.
- 13 210. Ristagno G, Raffay V, Semeraro F, Deakin C, Drennan I, Acworth J, Morley P, Perkins
- 14 G, Smyth M, Olasveengen T, et al. Pad positions and size in adults: A Consensus on
- 15 Science with Treatment Recommendations. <u>https://costr.ilcor.org/document/pad-paddle-</u>
- 16 <u>size-and-placement-in-adults-bls-and-als-sr-bls-2601</u>. Accessed January 10, 2025.
- 17 211. Yin RT, Taylor TG, de Graaf C, Ekkel MM, Chapman FW, Koster RW. Automated
- 18 external defibrillator electrode size and termination of ventricular fibrillation in out-of-
- 19 hospital cardiac arrest. *Resuscitation*. 2023;185:109754. doi:
- 20 10.1016/j.resuscitation.2023.109754
- 21 212. Lupton JR, Newgard CD, Dennis D, Nuttall J, Sahni R, Jui J, Neth MR, Daya MR. Initial
- 22 Defibrillator Pad Position and Outcomes for Shockable Out-of-Hospital Cardiac Arrest.
- 23 JAMA Netw Open. 2024;7:e2431673. doi: 10.1001/jamanetworkopen.2024.31673

1	213.	Kerber RE, Grayzel J, Hoyt R, Marcus M, Kennedy J. Transthoracic resistance in human
2		defibrillation. Influence of body weight, chest size, serial shocks, paddle size and paddle
3		contact pressure. Circulation. 1981;63:676-682. doi: 10.1161/01.cir.63.3.676
4	214.	Dalzell GW, Cunningham SR, Anderson J, Adgey AA. Electrode pad size, transthoracic
5		impedance and success of external ventricular defibrillation. Am J Cardiol. 1989;64:741-
6		744. doi: 10.1016/0002-9149(89)90757-1
7	215.	Cheskes S, Drennan IR, Turner L, Pandit SV, Dorian P. The impact of alternate
8		defibrillation strategies on shock-refractory and recurrent ventricular fibrillation: A
9		secondary analysis of the DOSE VF cluster randomized controlled trial. Resuscitation.
10		2024;198:110186. doi: 10.1016/j.resuscitation.2024.110186
11	216.	Foster AG, Deakin CD. Accuracy of instructional diagrams for automated external
12		defibrillator pad positioning. Resuscitation. 2019;139:282-288. doi:
13		10.1016/j.resuscitation.2019.04.034
14	217.	Nørskov AS, Considine J, Nehme Z, Olasveengen TM, Morrison LJ, Morley P, Bray JE,
15		on behalf of the International Liaison Committee on Resuscitation BLS Task Force.
16		Removal of bra for pad placement and defibrillation – A Scoping Review. Resuscitation
17		Plus. 2025:100885. doi: https://doi.org/10.1016/j.resplu.2025.100885
18	218.	Bray J, Noerskov A, Considine J, Nehme Z, Olasveengen T, Morrison L, on behalf of the
19		International Liaison Committee on Resuscitation Basic Life Support Task Force.
20		Removal of bra for pad placement and defibrillation: Task Force Synthesis of a Scoping
21		Review. https://costr.ilcor.org/document/removal-of-bra-for-pad-placement-and-
22		defibrillation-scoping-review-bls-2604-tf-scr. Accessed January 10, 2025.
1	219.	Di Maio R, O'Hare P, Crawford P, McIntyre A, McCanny P, Torney H, Adgey J. Self-
----	------	---
2		adhesive electrodes do not cause burning, arcing or reduced shock efficacy when placed
3		on metal items. Resuscitation. 2015;96:11. doi: 10.1016/j.resuscitation.2015.09.026
4	220.	Kramer CE, Wilkins MS, Davies JM, Caird JK, Hallihan GM. Does the sex of a
5		simulated patient affect CPR? Resuscitation. 2015;86:82-87. doi:
6		https://doi.org/10.1016/j.resuscitation.2014.10.016
7	221.	O'Hare P, Di Maio R, McCanny P, McIntyre C, Torney H, Adgey J. Public access
8		defibrillator use by untrained bystanders: Does patient gender affect the time to first
9		shock during resuscitation attempts? Resuscitation. 2014;85:S49. doi:
10		10.1016/j.resuscitation.2014.03.124
11	222.	Grunau B, Humphries K, Stenstrom R, Pennington S, Scheuermeyer F, van Diepen S,
12		Awad E, Al Assil R, Kawano T, Brooks S, et al. Public access defibrillators: Gender-
13		based inequities in access and application. Resuscitation. 2020;150:17-22. doi:
14		10.1016/j.resuscitation.2020.02.024
15	223.	Ishii M, Tsujita K, Seki T, Okada M, Kubota K, Matsushita K, Kaikita K, Yonemoto N,
16		Tahara Y, Ikeda T, et al. Sex- and Age-Based Disparities in Public Access Defibrillation,
17		Bystander Cardiopulmonary Resuscitation, and Neurological Outcome in Cardiac Arrest.
18		JAMA Network Open. 2023;6:e2321783-e2321783. doi:
19		10.1001/jamanetworkopen.2023.21783
20	224.	Munot S, Bray JE, Redfern J, Bauman A, Marschner S, Semsarian C, Denniss AR,
21		Coggins A, Middleton PM, Jennings G, et al. Bystander cardiopulmonary resuscitation
22		differences by sex - The role of arrest recognition. Resuscitation. 2024;199:110224. doi:
23		10.1016/j.resuscitation.2024.110224

1	225.	Perman SM, Vogelsong MA, Del Rios M. Is all bystander CPR created equal? Further
2		considerations in sex differences in cardiac arrest outcomes. Resuscitation.
3		2023;182:109649. doi: 10.1016/j.resuscitation.2022.11.015
4	226.	Debaty G, Perkins GD, Dainty KN, Norii T, Olasveengen TM, Bray JE, International
5		Liaison Committee on Resuscitation Basic Life Support Task F. Effectiveness of
6		ultraportable automated external defibrillators: A scoping review. Resusc Plus.
7		2024;19:100739. doi: 10.1016/j.resplu.2024.100739
8	227.	Debaty G, Dainty K, Norii T, Perkins GD, Olasveengen T, Bray J, on behalf of the
9		International Liaison Committee on Resuscitation Basic Life Support Task Force.
10		Effectiveness of ultra-portable or pocket automated external defibrillator: Task Force
11		Synthesis of a Scoping Review. https://costr.ilcor.org/document/effectiveness-of-ultra-
12		portable-or-pocket-automated-external-defibrillators-a-scoping-review-bls-2603-scr.
13		Accessed January 10, 2025.
14	228.	Bierens J, Abelairas-Gomez C, Barcala Furelos R, Beerman S, Claesson A, Dunne C,
15		Elsenga HE, Morgan P, Mecrow T, Pereira JC, et al. Resuscitation and emergency care in
16		drowning: A scoping review. Resuscitation. 2021;162:205-217. doi:
17		10.1016/j.resuscitation.2021.01.033
18	229.	Bierens J, Bray J, Abelairas-Gomez C, Barcala-Furelos R, Beerman S, Claesson A,
19		Dunne C, Fukuda T, Jayashree M, A TL, et al. A systematic review of interventions for
20		resuscitation following drowning. Resuscitation Plus. 2023;14:100406. doi:
21		10.1016/j.resplu.2023.100406
22	230.	Barcala-Furelos R, Schmidt A, Webber J, Perkins G, Bierens J, Bray J, on behalf of the
23		International Liaison Committee on Resuscitation Basic Life Support Task Force.
24		Immediate resuscitation in-water or delaying until on land strategies for drowning

- 1 Consensus on Science with Treatment Recommendations.
- 2 <u>https://costr.ilcor.org/document/immediate-resuscitation-in-water-or-delaying-on-land-in-</u>
- 3 <u>drowning-bls-tf-sr</u>. Accessed January 10, 2025.
- 4 231. Sempsrott J, Szpilman D, Liu L, Bierens J, Bray J, Perkins G, on behalf of the
- 5 International Liaison Committee on Resuscitation Basic Life Support Task Force.
- 6 Compression-only CPR vs Standard CPR with Compressions and Ventilations following
- 7 drowning: Consensus on Science with Treatment Recommendations.
- 8 <u>https://costr.ilcor.org/document/chest-compression-cpr-versus-conventional-cpr-in-</u>
- 9 <u>drowning-bls-tfsr</u>. Accessed January 10, 2025.
- 10 232. Seesink J, Thom O, Johnson S, Bierens J, Olasveengen T, Bray J, Morley P, Perkins G,
- 11 on behalf of the International Liaison Committee on Resuscitation Basic Life Support
- 12 Task Force. Oxygen administration following drowning Consensus on Science with
- 13 Treatment Recommendations. <u>https://costr.ilcor.org/document/oxygen-administration-</u>
- 14 <u>following-drowning-bls-856</u>. Accessed January 10, 2025.
- 15 233. Beerman S, Mecrow T, Fukuda T, Bierens J, Olasveengen T, Bray J, Morley P, Perkins
- 16 G, on behalf of the International Liaison Committee on Resuscitation Basic Life Support
- 17 Task Force. AED first vs CPR first for drowning: Consensus on Science with Treatment
- 18 Recommendations. <u>https://costr.ilcor.org/document/aed-first-vs-cpr-first-in-cardiac-</u>
- 19 <u>arrest-following-drowning-bls-856</u>. Accessed January 10, 2025.
- 20 234. Lagina A, Claesson A, Bierens J, Olasveengen T, Bray J, Morley P, Perkins G, on behalf
- 21 of the International Liaison Committee on Resuscitation Basic Life Support Task Force.
- 22 Public access to defibrillation following drowning Consensus on Science with Treatment
- 23 Recommendations. <u>https://costr.ilcor.org/document/implementation-of-pad-programs-for-</u>
- 24 <u>drowning-bls</u>. Accessed January 10, 2025.

1 235. Szpilman D, Soares M. In-water	resuscitationis it worthwhile? Resuscitation.
---------------------------------------	---

2 2004;63:25-31. doi: 10.1016/j.resuscitation.2004.03.017

- 3 236. Smyth M, Smith C, Ristagno G, Bray J, Chung S, Dainty K, Folke F, Ikeyama T, Johnsen
- 4 N, Kudenchuck P, et al. Impact of transport on CPR quality: A Consensus on Science
- 5 with Treatment Recommendations. <u>https://costr.ilcor.org/document/impact-of-transport-</u>
- 6 <u>on-cpr-quality-bls-1509a</u>. Accessed January 10, 2025.
- 7 237. Park HA, Ahn KO, Lee EJ, Park JO, On Behalf Of The Korean Cardiac Arrest Research
- 8 Consortium Ko CI. Association between Survival and Time of On-Scene Resuscitation in
- 9 Refractory Out-of-Hospital Cardiac Arrest: A Cross-Sectional Retrospective Study. *Int J*
- 10 Environ Res Public Health. 2021;18. doi: 10.3390/ijerph18020496
- 11 238. Loaec M, Himebauch AS, Kilbaugh TJ, Berg RA, Graham K, Hanna R, Wolfe HA,
- 12 Sutton RM, Morgan RW. Pediatric cardiopulmonary resuscitation quality during intra-
- 13 hospital transport. *Resuscitation*. 2020;152:123-130. doi:
- 14 10.1016/j.resuscitation.2020.05.003
- 15 239. Lee SGW, Hong KJ, Kim TH, Choi S, Shin SD, Song KJ, Ro YS, Jeong J, Park YJ, Park
- 16 JH. Quality of chest compressions during prehospital resuscitation phase from scene
- 17 arrival to ambulance transport in out-of-hospital cardiac arrest. *Resuscitation*.
- 18 2022;180:1-7. doi: 10.1016/j.resuscitation.2022.08.020
- 19 240. Jang DH, Jo YH, Park SM, Lee KJ, Kim YJ, Lee DK. Association of the duration of on-
- 20 scene advanced life support with good neurological recovery in out-of-hospital cardiac
- 21 arrest. Am J Emerg Med. 2021;50:486-491. doi: 10.1016/j.ajem.2021.09.006
- 22 241. Holmberg MJ, Granfeldt A, Stankovic N, Andersen LW. Intra-cardiac arrest transport
- and survival from out-of-hospital cardiac arrest: A nationwide observational study.
- 24 *Resuscitation*. 2022;175:50-56. doi: 10.1016/j.resuscitation.2022.04.020

1	242.	Grunau B, Kime N, Leroux B, Rea T, Van Belle G, Menegazzi JJ, Kudenchuk PJ,
2		Vaillancourt C, Morrison LJ, Elmer J, et al. Association of Intra-arrest Transport vs
3		Continued On-Scene Resuscitation With Survival to Hospital Discharge Among Patients
4		With Out-of-Hospital Cardiac Arrest. JAMA : the journal of the American Medical
5		Association. 2020;324:1058-1067. doi: 10.1001/jama.2020.14185
6	243.	Choi S, Kim TH, Hong KJ, Lee SGW, Park JH, Ro YS, Song KJ, Do Shin S. Comparison
7		of prehospital resuscitation quality during scene evacuation and early ambulance
8		transport in out-of-hospital cardiac arrest between residential location and non-residential
9		location. Resuscitation. 2023;182:109680.
10	244.	Burns B, Hsu HR, Keech A, Huang Y, Tian DH, Coggins A, Dennis M. Expedited
11		transport versus continued on-scene resuscitation for refractory out-of-hospital cardiac
12		arrest: A systematic review and meta-analysis. Resuscitation Plus. 2023;16:100482.
13	245.	Berry CL, Olaf MF, Kupas DF, Berger A, Knorr AC, Group CS. EMS agencies with high
14		rates of field termination of resuscitation and longer scene times also have high rates of
15		survival. Resuscitation. 2021;169:205-213. doi:
16		https://dx.doi.org/10.1016/j.resuscitation.2021.09.039
17	246.	Belohlavek J, Smalcova J, Rob D, Franek O, Smid O, Pokorna M, Horak J, Mrazek V,
18		Kovarnik T, Zemanek D, et al. Effect of Intra-arrest Transport, Extracorporeal
19		Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on
20		Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A
21		Randomized Clinical Trial. JAMA : the journal of the American Medical Association.
22		2022;327:737-747. doi: 10.1001/jama.2022.1025
23	247.	Burns B, Marschner I, Eggins R, Buscher H, Morton RL, Bendall J, Keech A, Dennis M.
24		A randomized trial of expedited intra-arrest transfer versus more extended on-scene

1		resuscitation for refractory out of hospital cardiac arrest: Rationale and design of the
2		EVIDENCE trial. Am Heart J. 2024;267:22-32. doi: 10.1016/j.ahj.2023.10.003
3	248.	Dennis M, Burns B, Marschner I, Keech A. Abstract 4135335: A randomized trial of
4		expedited intra-arrest transfer versus more extended on-scene resuscitation for refractory
5		out of hospital cardiac arrest: the EVIDENCE Study. Circulation. 2024;150:A4135335.
6		doi: 10.1161/circ.150.suppl_1.4135335
7	249.	Considine J, Couper K, Greif R, Ong GY, Smyth MA, Ng KC, Kidd T, Olasveengen TM,
8		Bray J, International Liaison Committee on Resuscitation Basic Life Support ALSPLS, et
9		al. Cardiopulmonary resuscitation in obese patients: A scoping review. Resusc Plus.
10		2024;20:100820. doi: 10.1016/j.resplu.2024.100820
11	250.	Considine J, Couper K, Greif R, Ong GYK, Smyth M, Ng K, ., Kidd T, Olasveengen T,
12		Bray J, on behalf of the International Liaison Committee on Resuscitation BLS AaETF.
13		Cardiopulmonary Resuscitation in Obese Patients Task Force Synthesis of a Scoping
14		Review. https://costr.ilcor.org/document/bls-2720-cardiopulmonary-resuscitation-in-
15		obese-patients-bls-tf-scr. Accessed January 10, 2025.
16	251.	Danciu SC, Klein L, Hosseini MM, Ibrahim L, Coyle BW, Kehoe RF. A predictive
17		model for survival after in-hospital cardiopulmonary arrest. Resuscitation. 2004;62:35-
18		42. doi: doi:10.1016/j.resuscitation.2004.01.035
19	252.	White RD, Blackwell TH, Russell JK, Jorgenson DB. Body weight does not affect
20		defibrillation, resuscitation, or survival in patients with out-of-hospital cardiac arrest
21		treated with a nonescalating biphasic waveform defibrillator. Critical Care Medicine.
22		2004;32:S387-S392. doi: doi:doi:10.1097/01.ccm.0000139460.25406.78
23	253.	Bunch TJ, White RD, Lopez-Jimenez F, Thomas RJ. Association of body weight with
24		total mortality and with ICD shocks among survivors of ventricular fibrillation in out-of-

1 hospital cardiac arrest. *Resuscitation*. 2008;77:351-355. doi:

- 2 doi:doi:10.1016/j.resuscitation.2007.12.014
- Wolff B, Machill K, Schumacher D, Schulzki I, Werner D. Early achievement of mild
 therapeutic hypothermia and the neurologic outcome after cardiac arrest. *International*
- 5 *Journal of Cardiology*. 2009;133:223-228. doi: doi:doi:10.1016/j.ijcard.2007.12.039
- 6 255. Jain R, Nallamothu BK, Chan PS. Body mass index and survival after in-hospital cardiac
 7 arrest. *Circulation: Cardiovascular Quality and Outcomes*. 2010;3:490-497. doi:
- 8 doi:10.1161/CIRCOUTCOMES.109.912501
- 9 256. Srinivasan V, Nadkarni VM, Helfaer MA, Carey SM, Berg RA. Childhood obesity and
- 10 survival after in-hospital pediatric cardiopulmonary resuscitation. *Pediatrics*.
- 11 2010;125:e481-e488. doi: 10.1542/peds.2009-1324
- 12 257. Testori C, Sterz F, Losert H, Krizanac D, Haugk M, Uray T, Arrich J, Stratil P, Sodeck
- 13 G. Cardiac arrest survivors with moderate elevated body mass index may have a better
- 14 neurological outcome: A cohort study. *Resuscitation*. 2011;82:869-873. doi:
- 15 doi:doi:10.1016/j.resuscitation.2011.02.027
- 16 258. Breathett K, Mehta N, Yildiz V, Abel E, Husa R. The impact of body mass index on
- 17 patient survival after therapeutic hypothermia after resuscitation. *American Journal of*

18 *Emergency Medicine*. 2016;34:722-725. doi: doi:doi:10.1016/j.ajem.2015.12.077

- 19 259. Geri G, Savary G, Legriel S, Dumas F, Merceron S, Varenne O, Livarek B, Richard O,
- 20 Mira JP, Bedos JP, et al. Influence of body mass index on the prognosis of patients
- 21 successfully resuscitated from out-of-hospital cardiac arrest treated by therapeutic
- 22 hypothermia. *Resuscitation*. 2016;109:49-55. doi:
- 23 doi:10.1016/j.resuscitation.2016.09.011

1	260.	Gupta T, Kolte D, Mohananey D, Khera S, Goel K, Mondal P, Aronow WS, Jain D,
2		Cooper HA, Iwai S, et al. Relation of Obesity to Survival After In-Hospital Cardiac
3		Arrest. American Journal of Cardiology. 2016;118:662-667. doi:
4		doi:10.1016/j.amjcard.2016.06.019
5	261.	Meert KL, Telford R, Holubkov R, Slomine BS, Christensen JR, Dean JM, Moler FW.
6		Pediatric Out-of-Hospital Cardiac Arrest Characteristics and Their Association With
7		Survival and Neurobehavioral Outcome. Pediatric critical care medicine. 2016;17:e543-
8		e550. doi: doi:10.1097/PCC.00000000000969
9	262.	Ogunnaike BO, Whitten CW, Minhajuddin A, Melikman E, Joshi GP, Moon TS,
10		Schneider PM, Bradley SM, Girotra S, Chan PS, et al. Body mass index and outcomes of
11		in-hospital ventricular tachycardia and ventricular fibrillation arrest. Resuscitation.
12		2016;105:156-160. doi: doi:doi:10.1016/j.resuscitation.2016.05.028
13	263.	Beckett VA, Knight M, Sharpe P. The CAPS Study: incidence, management and
14		outcomes of cardiac arrest in pregnancy in the UK: a prospective, descriptive study. Int J
15		Obstet Gynaecol. 2017;124:1374-1381. doi: doi:doi:10.1111/1471-0528.14521
16	264.	Galatianou I, Karlis G, Apostolopoulos A, Intas G, Chalari E, Gulati A, Iacovidou N,
17		Chalkias A, Xanthos T. Body mass index and outcome of out-of-hospital cardiac arrest
18		patients not treated by targeted temperature management. American Journal of
19		Emergency Medicine. 2017;35:1247-1251. doi: doi:10.1016/j.ajem.2017.03.050
20	265.	Gil E, Na SJ, Ryu JA, Lee DS, Chung CR, Cho YH, Jeon K, Sung K, Suh GY, Yang JH.
21		Association of body mass index with clinical outcomes for in-hospital cardiac arrest adult
22		patients following extracorporeal cardiopulmonary resuscitation. PLoS ONE. 2017;12.
23		doi: doi:10.1371/journal.pone.0176143

1	266.	Jung YH, Lee BK, Lee DH, Lee SM, Cho YS, Jeung KW. The association of body mass
2		index with outcomes and targeted temperature management practice in cardiac arrest
3		survivors. American Journal of Emergency Medicine. 2017;35:268-273. doi:
4		doi:10.1016/j.ajem.2016.10.070
5	267.	Shahreyar M, Dang G, Waqas Bashir M, Kumar G, Hussain J, Ahmad S, Pandey B,
6		Thakur A, Bhandari S, Thandra K, et al. Outcomes of In-Hospital Cardiopulmonary
7		Resuscitation in Morbidly Obese Patients. JACC Clin Electrophysiol. 2017;3:174-183.
8		doi: doi:10.1016/j.jacep.2016.08.011
9	268.	Aoki M, Hagiwara S, Oshima K, Suzuki M, Sakurai A, Tahara Y, Nagao K, Yonemoto
10		N, Yaguchi A, Morimura N. Obesity was associated with worse neurological outcome
11		among Japanese patients with out-of-hospital cardiac arrest. Intensive Care Medicine.
12		2018;44:665-666. doi: doi:10.1007/s00134-017-5042-3
13	269.	Wang CH, Huang CH, Chang WT, Fu CM, Wang HC, Tsai MS, Yu PH, Wu YW, Ma
14		MHM, Chen WJ. Associations between body size and outcomes of adult in-hospital
15		cardiac arrest: A retrospective cohort study. Resuscitation. 2018;130:67-72. doi:
16		doi:doi:10.1016/j.resuscitation.2018.07.006
17	270.	Chavda MP, Pakavakis A, Ernest D. Does obesity influence the outcome of the patients
18		following cardiac arrest? Indian J Crit Care Med. 2020;24:1077-1080. doi:
19		doi:doi:10.5005/jp-journals-10071-23665
20	271.	Wang C-H, Chang W-T, Huang C-H, Tsai M-S, Lu T-C, Chou E, Wu Y-W, Chen W-J.
21		Associations between Central Obesity and Outcomes of Adult In-hospital Cardiac Arrest:
22		A Retrospective Cohort Study. Scientific Reports. 2020;10:4604. doi: 10.1038/s41598-
23		020-61426-z

1	272.	Chen CT, Lin MC, Lee YJ, Li LH, Chen YJ, Hou PC, How CK. Association between
2		body mass index and clinical outcomes in out-of-hospital cardiac arrest survivors treated
3		with targeted temperature management. Journal of the Chinese Medical Association.
4		2021;84:504-509. doi: doi:doi:10.1097/JCMA.000000000000513
5	273.	Lee H, Oh J, Kang H, Lim TH, Ko BS, Choi HJ, Park SM, Jo YH, Lee JS, Park YS, et al.
6		Association between the body mass index and outcomes of patients resuscitated from out-
7		of-hospital cardiac arrest: a prospective multicentre registry study. Scandinavian Journal
8		of Trauma, Resuscitation and Emergency Medicine. 2021;29:24. doi:
9		doi:10.1186/s13049-021-00837-x
10	274.	Lee SE, Kim HH, Chae MK, Park EJ, Choi S. Predictive value of estimated lean body
11		mass for neurological outcomes after out-of-hospital cardiac arrest. Journal of Clinical
12		Medicine. 2021;10:1-10. doi: doi:10.3390/jcm10010071
13	275.	Patlolla SH, Ya'qoub L, Prasitlumkum N, Sundaragiri PR, Cheungpasitporn W, Doshi
14		RP, Rab ST, Vallabhajosyula S. Trends and differences in management and outcomes of
15		cardiac arrest in underweight and obese acute myocardial infarction hospitalizations.
16		American Journal of Cardiovascular Disease. 2021;11:576-586. doi: doi:doi:
17	276.	Schurr JW, Noubani M, Santore LA, Rabenstein AP, Dhundale K, Fitzgerald J, Cahill J,
18		Bilfinger TV, Seifert FC, McLarty AJ. Survival and Outcomes after Cardiac Arrest with
19		VA-ECMO Rescue Therapy. Shock. 2021;56:939-947. doi:
20		doi:doi:10.1097/SHK.000000000001809
21	277.	Swindell WR, Gibson CG. A simple ABCD score to stratify patients with respect to the
22		probability of survival following in-hospital cardiopulmonary resuscitation. J Community
23		Hosp Intern Med Perspect. 2021;11:334-342. doi:
24		doi:doi:10.1080/20009666.2020.1866251

1	278.	Wannasri T, Peonim V, Worasuwannarak W. Cardiopulmonary resuscitated
2		complications encountered in forensic autopsy cases: A 5-year retrospective analysis in
3		ramathibodi hospital. Indian J Forensic Med Toxicol. 2021;15:4621-4630. doi:
4		doi:doi:10.37506/ijfmt.v15i3.16019
5	279.	Chavda MP, Bihari S, Woodman RJ, Secombe P, Pilcher D. The impact of obesity on
6		outcomes of patients admitted to intensive care after cardiac arrest. J Crit Care. 2022;69.
7		doi: doi:10.1016/j.jcrc.2022.154025
8	280.	Aoki M, Aso S, Suzuki M, Tagami T, Sawada Y, Yasunaga H, Kitamura N, Oshima K.
9		Association between obesity and neurological outcomes among out-of-hospital cardiac
10		arrest patients: The SOS-KANTO 2017 study. Resuscitation Plus. 2023;17:100513. doi:
11		doi:doi:10.1016/j.resplu.2023.100513
12	281.	Czapla M, Kwaśny A, Słoma-Krześlak M, Juárez-Vela R, Karniej P, Janczak S,
13		Mickiewicz A, Uchmanowicz B, Zieliński S, Zielińska M. The Impact of Body Mass
14		Index on In-Hospital Mortality in Post-Cardiac-Arrest Patients-Does Sex Matter?
15		Nutrients. 2023;15. doi: doi:doi:10.3390/nu15153462
16	282.	Hjalmarsson A, Rawshani A, Råmunddal T, Rawshani A, Hjalmarsson C, Myredal A,
17		Höskuldsdottir G, Hessulf F, Hirlekar G, Angerås O, et al. No obesity paradox in out-of-
18		hospital cardiac arrest: Data from the Swedish registry of cardiopulmonary resuscitation.
19		Resuscitation Plus. 2023;15:100446. doi: doi:10.1016/j.resplu.2023.100446
20	283.	Kojima M, Mochida Y, Shoko T, Inoue A, Hifumi T, Sakamoto T, Kuroda Y.
21		Association between body mass index and clinical outcomes in patients with out-of-
22		hospital cardiac arrest undergoing extracorporeal cardiopulmonary resuscitation: A
23		multicenter observational study. Resuscitation Plus. 2023;16:100497. doi:
24		doi:10.1016/j.resplu.2023.100497

1	284.	Kosmopoulos M, Kalra R, Alexy T, Gaisendrees C, Jaeger D, Chahine J, Voicu S,
2		Tsangaris A, Gutierrez AB, Elliott A, et al. The impact of BMI on arrest characteristics
3		and survival of patients with out-of-hospital cardiac arrest treated with extracorporeal
4		cardiopulmonary resuscitation. Resuscitation. 2023;188. doi:
5		doi:10.1016/j.resuscitation.2023.109842
6	285.	Wang YG, Obed C, Wang YL, Deng FF, Zhou SS, Fu YY, Sun J, Wang WW, Xu J, Jin
7		K. Factors associated with the clinical outcomes of adult cardiac and non-cardiac origin
8		cardiac arrest in emergency departments: a nationwide retrospective cohort study from
9		China. World Journal of Emergency Medicine. 2023;14:144-146. doi:
10		doi:doi:10.5847/wjem.j.1920-8642.2023.044
11	286.	Lewandowski Ł, Czapla M, Uchmanowicz I, Kubielas G, Zieliński S, Krzystek-Korpacka
12		M, Ross C, Juárez-Vela R, Zielińska M. Machine Learning and Clinical Predictors of
13		Mortality in Cardiac Arrest Patients: A Comprehensive Analysis. Med Sci Monit.
14		2024;30:e944408. doi: 10.12659/msm.944408
15		