First Aid Data Tables: Characteristics of Included Articles in ScopRev of Use of Supplementary Oxygen in First Aid

Author; Year Publishe d	Study Type	Settin g	Popula tion	Interven tion	Compa rison	Outcome s	Results/Key findings
Smith 1970 ¹	Retrosp ective case series	Preho spital and hospit al emerg ency depart ments	Accide ntal and deliber ate carbon monoxi de (CO) poisoni ng (N=206)	Oxygen, oxygen carbon dioxide mixture, hyperba ric oxygen	No supple mentar y oxygen	Delirium, persistent psychiatri c symptoms	Mostly epidemiological study. Found fewer persistent symptoms if oxygen administered, advised oxygen carbon dioxide mixture if hyperbaric oxygen not available.
Winter 1976 ²	Literatur e review	Pre- and in- hospit al	Person s with carbon monoxi de poisoni ng	100% oxygen as first aid, hyperba ric oxygen in hospital	Not specifie d	Reversal of hypoxemi a and accelerat ed eliminatio n of CO	Authors recommended 100% oxygen at atmospheric or hyperbaric pressures to reverse hypoxemia and accelerate CO elimination.
Olson 1984 ³	Literatur e review	Pre- and in hospit al	Person s with carbon monoxi de poisoni ng	100% oxygen as soon as possible , multiple non-first aid	Not specifie d	Time to resolution of neurologi cal and neuro- psychiatri c symptoms	Recommends 100% oxygen as soon as carbon monoxide poisoning suspected, using a tight-fitting mask to deliver the highest percent oxygen.
Koster 2003 ⁴	Literatur e review	Pre- and in hospit al	Person s with carbon monoxi de poisoni ng	100% oxygen, recompr ession chamber if availabl e	None	Not specified	The authors recommend administration of 100% oxygen.

Table 1: Carbon Monoxide Poisoning

Kao 2006 ¹	Literatur e review	Pre- and in hospit al	Person s with carbon monoxi de poisoni ng	Supple mentary oxygen and hyperba ric oxygen	None	Not specified	Authors recommend supplemental oxygen and other supportive care.
Jüttner 2021 ⁵	Evidenc e based guidelin e	Pre- and in hospit al	Person s with carbon monoxi de poisoni ng	100% oxygen	None	Not specified	Authors recommend immediate administration of oxygen at the highest available concentration.

Table 2: Diving Emergencies

Author; Year Publish ed	Study Type	Setti ng	Popula tion	Interven tion	Compa rison	Outcome s	Results/Key findings
Dick 1985 ⁶	Retrospe ctive case series	Pre- and in hospit al	Scuba divers with DCI (N= 70) and air embolis m (N=39)	100% oxygen	No oxygen treatme nt	Neurologi cal decompre ssion illness and cerebral air aneurysm	Authors describe improvement in cases where oxygen was administered immediately for decompression sickness or air embolism.
Shinnick 1994 ⁷	Literature review	Pre- and in hospit al	Divers with compre ssed gas (probab ly recreati onal)	100% oxygen as first aid, hyperba ric oxygen in hospital	No oxygen treatme nt	Preventio n of "permane nt disability or even death"	Review focuses on delay in the initiation of treatment for diving emergencies and calls for emergency physicians to contact Divers Alert Network (DAN). Authors also emphasize the importance of the administration of 100% oxygen.
Spira 1999 ⁸	Literature Review	EMS and in	Divers with barotra	100% oxygen during	Not specifie d	Preventio n of sequelae	Advises 100% oxygen during transport to a facility where hyperbaric

		hospit al	uma include air embolis m and DCI	transfer to unit with hyperba ric oxygen		of diving injuries	oxygen can be administered.
Lippman n 2003 ⁹	Proceedi ngs of conferen ce	Preho spital	Divers with DCI	100% oxygen	Not specifie d	Relief of symptoms , post treatment residua	Authors emphasize the importance of having oxygen equipment that can provide high oxygen concentrations to responsive or unresponsive victims of diving emergencies.
Longphr e 2007 ¹⁰	Retrospe ctive cohort, 2,231 individual s	Preho spital	Divers using compre ssed gas (N = 2231)	"First aid oxygen" prehospi tal	No first aid supple mentar y oxygen	Resolutio n of symptoms and number of retreatme nt recompre ssion	Authors noted that oxygen decreased the number of recompression treatments needed if administered within 4 hours of surfacing.
Liow 2009 ¹¹	Retrospe ctive case series	Hospi tal and preho spital	Divers with DCI (N = 3)	Hyperba ric oxygen (HBO) and normob aric 100% oxygen	None	Neurologi cal recovery	Recommends 100% normobaric oxygen until recompression therapy.
Moon 2009 81 ¹²	Literature review	Pre and in hospit al	Recreat ional divers with DCI	First aid oxygen prehospi tal, multiple other in- hospital intervent ions	Not specifie d	Resolutio n of symptoms and need for more than one recompre ssion treatment	Recommends oxygen administration within 4 hours of injury based on Longphre study ¹⁰ findings.
Vann 2011 ¹³	Literature review published in seminar	Pre- and in hospit al	Divers using compre ssed gas	100% oxygen in prehospi tal setting	Not specifie d	Recovery from diving injury, symptom resolution	Recommends the administration of 100% oxygen(O2) for several hours, even after symptom resolution.

	proceedi ngs						
Blake 2020 ¹⁴	Laborator y	Labor atory	Healthy volunte er divers (N = 12)	Oxygen breathe d from 1) demand valve with intraoral mask and nose clip or 2) medical oxygen rebreath ing system with oronasal mask and with intraoral mask	NRB with oxygen at 15 or 10 L/min	Transcuta neous measure ment of tissue oxygen partial pressure in limbs	Tissue oxygen partial pressure and nasopharyngeal inspired oxygen concentrations similar with demand valve with intraoral mask, medical O2 rebreathing system with oronasal or intraoral mask, and NRB with flow rate 15 L/min. Values lower for NRB at flow rate 10 L/min.
Pollock. 2017 ¹⁵	Literature Review	Pre- and in hospit al	Recreat ional divers (compre ssed gases includin g air, nitroge n and helium mixture s	High partial pressure oxygen	Not specifie d	Not specified	Concludes that high partial pressure oxygen is the primary first aid measure for DCI, can use continuous flow with NRB or pocket mask in diving environment, but higher oxygen fraction can be achieved in spontaneously breathing patients with mask and demand valve and rebreather systems.
Whayne 2018 ¹⁶	Literature Review	Pre- and in hospit al	Comme rcial and recreati onal divers using compre ssed gases	100% oxygen in prehospi tal setting	Not specifie d	"Decreas e complicati ons and save lives"	Authors recommends immediate administration of 100% oxygen and rehydration with intravenous isotonic fluids until hyperbaric oxygen therapy is available.

Abbreviations:

- EMS Emergency Medical Service NRB Non-rebreather mask
- Decompression Illness DCI

Table 3. Chronic Obstructive Pulmonary Disease

Author; Year Publishe d	Study Type	Setti ng	Popula tion	Interven tion	Compa rison	Outcomes	Results/Key findings
Austin 2006 ¹⁷	Systemat ic review of randomiz ed controlled trials (RCTs)	Pre hospit al	Acute exacer bation of Chronic obstruc tive pulmon ary disease (AECO PD)	High flow oxygen. Not defined except subgrou p of flow for nebulize d broncho dilators – "typically 6- 8L/min"	"Contro Iled" oxygen	Mortality from respiratory causes <i>Secondary</i> <i>outcomes</i> 1. All cause mortality 2. Dyspnea score 3. Arterial blood gas (ABG) 4. Length of stay (LOS) 5. ICU admission 6. Mental status score 7. Conscious ness score 7. Conscious ness score (i.e., GCS) 8. Invasive ventilation 9. Noninvasiv e ventilation 10.Lung function 11.Illness score	Only 2 RCTs were identified and were ongoing with no results published at the time of the review.
Austin 2010 ¹⁸	Cluster randomiz ed trial	Preho spital	COPD, includin g AECOP D	Oxygen titrated to saturatio ns of 88-	High concent ration oxygen: High	Mortality, respiratory acidosis, hypercapni a,	Titrated oxygen treatment significantly reduced mortality, hypercapnia, and respiratory acidosis

			(N = 405)	92%; nebulize d broncho dilators delivere d with compres sed air. (N=179)	flow oxygen treatme nt (8– 10 L/min) adminis tered via a non- rebreat her face mask and bronch odilator s delivere d by nebuliz ation with oxygen flows of 6–8 I/min. (N= 226)		compared with high flow oxygen in acute exacerbations of chronic obstructive pulmonary disease.
Ntoumen opoulos 2011 70008 ¹⁹	Review with Comment ary	Preho spital	AECOP D	Titrated oxygen by NC to sat 88%- 92%	High flow oxygen (8-10 L/min) via NRM	Pre- and in-hospital mortality; length of stay, ABGs.	Synopsis of Austin 2010 ¹⁸ study with commentary and review of risk of hypercarbia with high concentration oxygen therapy, current guidelines for oxygen delivery with AECOPD.
Wijesingh e 2011 ²⁰	Retrospe ctive observati onal	Preho spital	AECOP D patients transpo rted by ambula nce (N = 250)	Oxygen administ ration at >/= 3 L/min (N=168/ 92%), >/=8 L/min, defined as high flow, via	Oxygen adminis tration at <3 L/min (define d as low flow)	Death, required assisted ventilation, respiratory failure	When oxygen delivery was analyzed as a continuous variable according to documented flow rate, Increased oxygen flow was associated with increased risk of death, assisted ventilation or respiratory failure with an odds ratio (OR) of 1.2 (95% CI 1.0–1.4)

Cameron 2012 ²¹	Retrospe	Preho spital	AECOP D	NC, mask or NRM (N=90; 49%) Oxygen saturatio	Oxygen saturati	Composite measure of	per 1 L/min oxygen flow. Increasing PaO2 was associated with a greater risk of a poor outcome with an OR of 1.1 (95% CI 1.0–1.3) per 10 mmHg higher PaO2. A nonsignificant association was reported for the dichotomous "high flow" vs. "low flow" oxygen for the main outcome composite of death, positive pressure ventilation or respiratory failure. Adverse clinical outcomes were
	observati onal		patients transpo rted by ambula nce who had ABG within 4 hours of triage (N=254)	n on ABG within 4 hours of arrival in ED <88% or >96%	on on ABG within 4 hours of arrival in ED 88-92%	hypercapni c respiratory failure, assisted ventilation or inpatient death	associated with both hypoxemia (OR 2.16, 95% CI 1.11 to 4.20) and hyperoxemia (OR 9.17, 95% CI, 4.08- 20.6) compared with normoxemia (OR 2.16, 95% CI, 1.11 - 4.20). Results support titrating oxygen to target oxygen saturation.
Pilcher 2015 ²²	Literature Review	Pre- and in hospit al	AECOP D	Titrated oxygen and air- driven nebuliza tion of broncho dilators	High concent ration or high dose oxygen	Mortality	Authors describe evidence from Austin ¹⁸ of mortality risk if patients with AECOPD received high concentration oxygen, guidelines for use of oxygen only if SpO2 <88%, titration-to 88- 92%, use of air-driven delivery of nebulized bronchodilators.
Ringbaek 2015 ²³	Observati onal study	Pre- and in- hospit al	AECOP D patients transpo rted by	Oxygen, varying flow rates	Oxygen , varying flow rates	Respiratory acidosis at hospital admission, length of	Review aimed to assess the frequency of "inappropriate oxygen therapy" (determined by an oxygen saturation of

			ambula nce who receive d any oxygen (N=405)			stay, ventilatory support, in- hospital mortality	92% or greater) given in ambulance for AECOPD patients. A total of 352 (88.7%) of 397 patients were deemed to have received inappropriate oxygen therapy based on an O2 saturation of 92% or greater. Of this group of patients, 33.5% had respiratory acidosis at hospital admission.
Lumholdt 2017 ²⁴	Retrospe ctive observati onal; Abstract	Preho spital	Patient s brought to Emerge ncy Depart ment (ED) with "respira tory conditio ns" EMS care only provide d with 100% oxygen. (N=125)	CO ₂ retention	No CO ₂ retentio n	Hypercapa nic acidosis due to excessive prehospital oxygen	11 patients with respiratory conditions brought to ED by EMS and found to have CO2 retention and acidosis. The mean oxygen saturation of the 11 patients with CO ₂ retention was 84% on presentation to EMS and 95% on arrival in ED. They inferred this was due to excessive oxygen administration before arrival in hospital.
Bentsen 2020 ²⁵	Retrospe ctive observati onal	Pre- hospit al	COPD transpo rted to hospital by Emerge ncy Medical Service s (EMS) before and after implem nting a	High flow Oxygen	Titrated oxygen	30-day mortality	30-day mortality of 56 patients with AECOPD treated with high-flow oxygen was 11.5% vs 9.4% in the titrated oxygen group (P=0.41). A change of treatment protocols to titrated oxygen was associated with a lower 30-day mortality for patients with an acute exacerbation of COPD, but not for all COPD patients.

			change in prehos pital oxygen protoco led from high flow to titrated oxygen. N=707			110 A	The second state of a factor
Kopsaftis 2020 ²⁶	Cochrane review	Pre- hospit al EMS	Adults with acute exacer bation of COPD	"Controll ed oxygen"	"Stand ard oxygen " cited in the single paper as: High concent ration oxygen: High flow oxygen treatme nt (8– 10 L/min) adminis tered via a non- rebreat her face mask and bronch odilator s delivere d by nebuliz ation with oxygen flows of	"Mortality"	The one included study (Austin) ¹⁸ found a reduction in pre/in- hospital mortality for the titrated oxygen arm compared to the high- flow control arm. However, the paucity of evidence limits the reliability of these findings and generalizability to other settings.

					6–8 I/min.		
Hodroge 2020 ²⁷	Evidence Based Guideline	Preho spital	Adult patients with respirat ory distress	Titrated Oxygen	High Flow oxygen (not defined)	Mortality	Concluded that titration of oxygen to 94-96% for most patients and 88- 92% for those with AECOPD was associated with lower mortality.
Barnett 2022 ²⁸	Evidence based guideline	Pre- and in hospit al	COPD	N/A	N/A	N/A	Key recommendations: assess oxygenation, oxygen requires prescription and to set oxygen saturation targets of 88-92% for individuals with potential hypercapnia and 92- 96% for others.
Gottlieb 2022 ²⁹	Evidence based guideline.	Preho spital	All patients conside red for supple mentar y oxygen	titrated oxygen	High flow oxygen	Mortality and "functional outcome"	Recommends the use of pulse oximetry to assess the need for oxygen before administering it, except for in critical situations (e.g. during CPR).
Jensen 2023 ³⁰	Randomi zed control trial study protocol	Preho spital, gas used to drive inhale d bronc hodila tors (Plan ned N=1,8 88)	AECOP D	Titrated oxygen and compres sed air driven inhaled broncho dilators to target SpO2 (oxygen saturatio n) 88- 92%	Standar d high flow oxygen	30-day mortality	Protocol for RCT comparing targeted prehospital oxygen therapy with standard high concentration/flow oxygen.
Gude NCT0570 3919 ³¹	Randomi zed control trial registere d in USA. (Same	Preho spital, gas used to drive inhale	AECOP D	Titrated oxygen and compres sed air driven inhaled	Standar d high flow oxygen	30-day mortality	N/A not completed

trial as Jensen 2023 published study protocol.)	d bronc hodila tors	broncho dilators to target SpO2 (oxygen saturatio		
		n) 88- 92%		

Abbreviations Table 1-3:

ABG, arterial blood gas; AECOPD, acute exacerbation of COPD; CI, confidance interval; CO₂, carbon dioxide; COPD, chronic obstructive pulmonary disease; CPR; cardiopulmonary resuscitation; ED, emergency department; EMS, emergency medical services; GCS, Glasgow coma scale; HR, hazard ratio; ICU, intensive care unit; L/min, liters per minute; LOS, length of stay; N/A, not applicable; NC,nasal cannula; NRM, nonrebreather face mask; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk

REFERENCES

- 1. Kao LW, Nanagas KA. Toxicity associated with carbon monoxide. *Clin Lab Med.* 2006;26:99-125. doi: 10.1016/j.cll.2006.01.005
- 2. Winter PM, Miller JN. Carbon monoxide poisoning. Jama. 1976;236:1502.
- 3. Olson KR. Carbon monoxide poisoning: mechanisms, presentation, and controversies in management. *J Emerg Med.* 1984;1:233-243. doi: 10.1016/0736-4679(84)90078-7
- 4. Koster LA, Rupp T. The silent killer: recognizing & treating carbon monoxide poisoning. *JEMS*. 2003;28:80-87; quiz 88-89.
- 5. Juttner B, Busch HJ, Callies A, Dormann H, Janisch T, Kaiser G, Korner-Gobel H, Kluba K, Kluge S, Leidel BA, et al. S2k guideline diagnosis and treatment of carbon monoxide poisoning. *Ger Med Sci.* 2021;19:Doc13. doi: 10.3205/000300
- 6. Dick AP, Massey EW. Neurologic presentation of decompression sickness and air embolism in sport divers. *Neurology*. 1985;35:667-671. doi: 10.1212/wnl.35.5.667
- 7. Shinnick MA. Recognition of scuba diving accidents and the importance of oxygen first aid. *J Emerg Nurs*. 1994;20:105-110.
- 8. Spira A. Diving and marine medicine review part II: diving diseases. *J Travel Med.* 1999;6:180-198. doi: 10.1111/j.1708-8305.1999.tb00857.x
- 9. Lippmann J. First aid oxygen administration for divers. *South Pacific Underwater Medicine Society Journal*. 2003;33
- 10. Longphre JM, Denoble PJ, Moon RE, Vann RD, Freiberger JJ. First aid normobaric oxygen for the treatment of recreational diving injuries. *Undersea Hyperb Med.* 2007;34:43-49.
- 11. Liow MH, Chong SJ, Kang WL. A tale of three divers: recompression therapy for divers with severe Type II decompression sickness with neurological deficits. *Singapore Med J*. 2009;50:e173-175.
- 12. Moon RE. Adjunctive therapy for decompression illness: a review and update. *Diving Hyperb Med.* 2009;39:81-87.
- 13. Vann RD, Butler FK, Mitchell SJ, Moon RE. Decompression illness. *Lancet*. 2011;377:153-164. doi: 10.1016/s0140-6736(10)61085-9
- 14. Blake DF, Crowe M, Lindsay D, Brouff A, Mitchell SJ, Leggat PA, Pollock NW. Comparison of tissue oxygenation achieved breathing oxygen using different delivery

devices and flow rates. *Diving Hyperb Med.* 2020;50:34-42. doi: 10.28920/dhm50.1.34-42

- 15. Pollock NW, Buteau D. Updates in Decompression Illness. *Emerg Med Clin North Am.* 2017;35:301-319. doi: 10.1016/j.emc.2016.12.002
- Whayne TF. Medical Management and Risk Reduction of the Cardiovascular Effects of Underwater Diving. *Curr Vasc Pharmacol*. 2018;16:344-354. doi: 10.2174/1570161115666170621084316
- Austin M, Wood-Baker R. Oxygen therapy in the pre-hospital setting for acute exacerbations of chronic obstructive pulmonary disease. *Cochrane Database Syst Rev.* 2006:Cd005534. doi: 10.1002/14651858.CD005534.pub2
- 18. Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. *Bmj*. 2010;341:c5462. doi: 10.1136/bmj.c5462
- Ntoumenopoulos G. Using titrated oxygen instead of high flow oxygen during an acute exacerbation of chronic obstructive pulmonary disease (COPD) saves lives. *J Physiother*. 2011;57:55. doi: 10.1016/S1836-9553(11)70008-X
- 20. Wijesinghe M, Perrin K, Healy B, Hart K, Clay J, Weatherall M, Beasley R. Pre-hospital oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. *Intern Med J*. 2011;41:618-622. doi: 10.1111/j.1445-5994.2010.02207.x
- 21. Cameron L, Pilcher J, Weatherall M, Beasley R, Perrin K. The risk of serious adverse outcomes associated with hypoxaemia and hyperoxaemia in acute exacerbations of COPD. *Postgrad Med J.* 2012;88:684-689. doi: 10.1136/postgradmedj-2012-130809
- 22. Pilcher J, Weatherall M, Perrin K, Beasley R. Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. *Expert Rev Respir Med.* 2015;9:287-293. doi: 10.1586/17476348.2015.1016503
- 23. Ringbaek TJ, Terkelsen J, Lange P. Outcomes of acute exacerbations in COPD in relation to pre-hospital oxygen therapy. *Eur Clin Respir J*. 2015;2. doi: 10.3402/ecrj.v2.27283
- 24. Lumholdt M, Cresciolo E, Monti A, Sørensen LR, Damgaard KA. Abstract 19: Prehospital oxygen therapy and CO2 retention in patients admitted through the emergency department. *BMJ Open*. 2017;7:A1 - A18.
- 25. Bentsen LP, Lassen AT, Titlestad IL, Brabrand M. A change from high-flow to titrated oxygen therapy in the prehospital setting is associated with lower mortality in COPD patients with acute exacerbations: an observational cohort study. *Acute Med.* 2020;19:76-82.
- 26. Kopsaftis Z, Carson-Chahhoud KV, Austin MA, Wood-Baker R. Oxygen therapy in the pre-hospital setting for acute exacerbations of chronic obstructive pulmonary disease. *Cochrane Database Syst Rev.* 2020;1:Cd005534. doi: 10.1002/14651858.CD005534.pub3
- Hodroge SS, Glenn M, Breyre A, Lee B, Aldridge NR, Sporer KA, Koenig KL, Gausche-Hill M, Salvucci AA, Rudnick EM, et al. Adult Patients with Respiratory Distress: Current Evidence-based Recommendations for Prehospital Care. *West J Emerg Med.* 2020;21:849-857. doi: 10.5811/westjem.2020.2.43896
- 28. Barnett A, Beasley R, Buchan C, Chien J, Farah CS, King G, McDonald CF, Miller B, Munsif M, Psirides A, et al. Thoracic Society of Australia and New Zealand Position Statement on Acute Oxygen Use in Adults: 'Swimming between the flags'. *Respirology*. 2022;27:262-276. doi: 10.1111/resp.14218

- 29. Gottlieb J, Capetian P, Hamsen U, Janssens U, Karagiannidis C, Kluge S, Nothacker M, Roiter S, Volk T, Worth H, et al. German S3 Guideline: Oxygen Therapy in the Acute Care of Adult Patients. *Respiration*. 2022;101:214-252. doi: 10.1159/000520294
- 30. Jensen AS, Valentin JB, Mulvad MG, Hagenau VH, Skaarup AH, Johnsen SP, Vaeggemose U, Gude MF. Standard vs. Targeted Oxygen Therapy Prehospitally for Chronic Obstructive Pulmonary Disease (STOP-COPD); study protocol for a randomised controlled trial. Research Square (Preprint). <u>https://assets.researchsquare.com/files/rs-2760789/v1/6878e346-9818-471a-a140-051b8f6d41f1.pdf?c=1684531312</u>. 2023. Accessed December 26.
- Gude MF, Jensen AS. Standard vs Targeted Oxygen Therapy Prehospital for Chronic Obstructive Pulmonary Disease (STOP-COPD): NCT05703919. U.S. National Library of Medicine. <u>https://classic.clinicaltrials.gov/ct2/show/NCT05703919</u>. 2023. Accessed December 26.