Evidence Update Worksheet

Atropine for cardiac arrest ALS 3206

Worksheet author(s): Tonia Nicholson Task Force: ALS Date Submitted to SAC rep for peer review and approval: SAC rep: Peter Morely

PICOST / Research Question: (Attach SAC representative approved completed PICOST template) ALS-D-024B

In adult patients in cardiac arrest (asystole, PEA, pulseless VT, and VF) (out-of-hospital, in-hospital), does the use of atropine or atropine in combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Year of last full review: 2010

Current ILCOR Consensus on Science and Treatment Recommendation for this PICOST:

Consensus on Science

Three studies (LOE 4) (total of 12 operating rooms, 2 catheterization laboratories, 2 out-of-hospital cardiac arrest patients, and 4 inhospital cardiac arrest patients) documented improvement in survival when atropine was given to patients in asystole in combination with epinephrine and following induction with succinylcholine and fentanyl. One study documented improvement in ROSC (14% versus 0%) when atropine was given to adults in asystolic out-of-hospital cardiac arrest in combination with epinephrine and sodium bicarbonate, but none survived to discharge (LOE 3).

Three studies suggested the use of atropine for treatment of cardiac arrest was not associated with any change in survival (LOE 2; LOE 5). Four human studies suggested that the use of atropine was associated with poor survival (LOE 4).

Treatment Recommendation

There is insufficient evidence to support or refute the use of atropine in cardiac arrest to improve survival to hospital discharge.

Current Search Strategy (for an existing PICOST) included in the attached approved PICOST:

((((bradycardia/dt[MeSH Terms]) OR asystole/dt[MeSH Terms]) OR av block/dt[MeSH Terms])) AND atropine[MeSH Terms]

New Search strategy: (for a new PICOST should be outlined here as per Evidence Update Process):

"atropine" OR "atropine" OR "atropin" OR "atropinization" OR "atropinized" OR "hyoscyamine" OR "hyoscyamine" AND ("heart arrest" OR ("heart" AND "arrest") OR "heart arrest" OR ("cardiac" AND "arrest") OR "cardiac arrest")

Database searched: Pubmed 22/04/2023 (eg Medline Embase Cochrane)

Time Frame: (existing PICOST) – updated from end of last search (please specify)

Time Frame: (new PICOST) - at the discretion of the Task Force (please specify) Jan 2010 - 2023

Date Search Completed: 22/04/2023

Search Results (Number of articles identified and number identified as relevant):

I67 articles identified. 4 identified as potentially relevant, 1 of these excluded on assessment of full manuscript.

Summary of Evidence Update:

Relevant Guidelines or Systematic Reviews:

Organization (if	Guideline or	Topic addressed	Number of	Key findings	Treatment
relevant);	systematic	or PICO(S)T	articles		recommendations
Author;	review		identified		
Year Published					

RCT:

Study Acronym;	Aim of Study;	Patient Population	Study	Endpoint Results	Relevant 2° Endpoint
Author;	Study Type;		Intervention	(Absolute Event	(if any);
Year Published	Study Size (N)		(# patients) /	Rates, P value; OR or	Study Limitations;
			Study	RR; & 95% CI)	Adverse Events
			Comparator		
			(# patients)		
	Study Aim:	Inclusion Criteria:	Intervention:	<u>1° endpoint:</u>	Study Limitations:
	Study Type:		Comparison:		

Nonrandomized Trials, Observational Studies

Study Acronym; Author;	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Year Published				
1) Atropine Sulfate for Patients with OOH Cardiac Arrest due to Asystole & PEA. SOS-KANTO Study Group: Nagao K, Yago T, Sakamoto T, Koseki K, Igarashi M et al. Published 2011.	Study Type: Prospective, multicenter, observational trial of 7,448 adult patients with persistent asystole or PEA after OOHCA in the Kanto area of Japan. Patients were managed according to the Guidelines for CPR from 2000. 1mg of adrenaline was given every 3-5 mins for persistent cardiac arrest. The administration of Atropine was not standardized, but 1mg could also be given every 3-5 mins. 5,048 patients were given adrenaline alone, 1,372 were given adrenaline with atropine.	Inclusion Criteria: Age ≥ 18yrs. Cardiac arrest with a non-shockable rhythm.	 <u>1° endpoint:</u> The primary endpoint was a favourable neurological outcome at 30 days after cardiac arrest (CPC score of 1 or 2). For the patients in asystole, in the multivariable logistic regression analysis, the AOR for epinephrine & atropine compared with epinephrine alone was 0.69 (95%CI 0.19– 2.48; P=0.571) for 30-day favourable neurological outcome. For the patients with PEA, in the multivariable logistic regression analysis the AOR after administration of epinephrine & atropine compared with epinephrine alone was 0.51 (95%CI 0.10–2.48; P=0.040) for 30-day favourable neurological outcome. The secondary endpoints were ROSC, survival to hospital admission and survival at 30 days after cardiac arrest. For asystole, in multivariable logistic regression analysis, AOR for epinephrine & atropine compared with epinephrine alone was: 1.82 (95%CI 1.58–2.09; P<0.001) for ROSC, 1.55 (95%CI 1.31–1.83; P< 0.001)for survival to hospital admission, 1.01 (95%CI 0.59– 1.72; P=0.986) for 30-day survival. So, for asystole this study showed <i>no</i> association between administration of atropine and long-term neurological	The study concluded that the administration of atropine had no long-term neurological benefit in adults with out-of-hospital cardiac arrest due to non- shockable rhythms. Atropine is not useful for adults with PEA. (Associated with worse 1° and 2° endpoints) <u>Study Limitations</u> The study was observational & used guidelines from 2000. The time interval from cardiac arrest to administration of atropine was long (call- to-drug-administration interval >30 min). Outcomes might have been different if the drugs had been administered earlier.

Study; Author;	Study Type/Design;	Inclusion	benefit, but atropine appeared to be an independent predictor of ROSC and survival to hospital admission. For PEA, in the multivariable logistic regression analysis the AOR after the administration of epinephrine and atropine compared with epinephrine alone was 0.95 (95%CI 0.73–1.24; P=0.708) for ROSC, 0.87 (95%CI 0.65–1.16; P=0.339) for survival to hospital admission, and 0.40 (95%CI 0.22–0.86; P=0.016) for 30-day survival. Thus for PEA, administration of atropine was an independent predictor of death at 30 days . Neurological outcomes were defined by physicians not connected to this study.	Summary/Conclusion
Year Published 2) The Additive Effect of Atropine Sulfate during Cardiopulmonary Resuscitation in Out- of-hospital Non-traumatic Cardiac Arrest Patients with Non-shockable Rhythm. Yano T, Kawana R, Yamauchi K, Endo G. and Nagamine Y. Published 2019.	Study Size (N) A retrospective observational study from 2012-2017, of 453 patients with non-traumatic OHCA in Japan. 1-mg of IV epinephrine was administered every 3- 5 minutes. Use of atropine wasn't standardized, but the dose used for asystole or PEA arrest was 1 mg IV, repeated every 3-5 minutes (maximum total of 3 mg) if asystole or PEA arrest persisted. Outcomes were compared between those given epinephrine and atropine (157) and those given epinephrine alone (210).	criteria: Adults ≥ 18yrs old. Patients arriving at a community hospital in Japan after non-traumatic OHCA with a non-shockable rhythm, between 1 st Oct 2012 & 30 th April 2017. Exclusion <u>Criteria:</u> < 18yrs old; Sustained ROSC before arrival in ED; Initial rhythm in ED shockable; Drug dose unclear; Adrenaline not given; Patient had DNR order.	value; OR or RR; & 95% Cl)The primary outcome was survival tohospital admission (meaning survival untiladmission after ROSC). After multivariableanalysis, Odds ratio (OR) for overall survivalto hospital admission for epinephrine onlywas 0.64 (95% Cl: 0.55-0.74, p<0.01), for	Comment(s)A multivariable logisticregression analysissuggested thatadministration ofatropine (within 2 mg)following epinephrine,was an independentpredictor of survival tohospital admission foradults with asystolicOHCA. Results for PEAweren't statisticallysignificant (p=0.06).Limitations1)Selection bias - thetwo most experiencedemergency physicianshave always routinelyused atropine followingepinephrine, & theycould have contributedto the improved OR ofROSC with the additionof atropine.2) Resuscitation timebias -both groups had amean call-to-ER arrivalinterval of longer than20 mins. Resuscitationoutcomes might havebeen different if thedrugs had beenadministered during

			Favourable neurological outcome at 30 days (Glasgow-Pittsburgh cerebral- performance category of 1 or 2). 11 patients survived to 30 days, including 1 with a favourable neurological outcome, but the sample size was too small to perform a binominal multivariate logistic regression analysis with this variable.	the circulatory phase (approx. 4-10 minutes after cardiac arrest). 3) Propensity score matching (the ideal statistical method) couldn't be used to assess the effect of the addition of atropine. 4) Termination of ACLS efforts was at the attending physician's discretion.
Study; Author; Year Published 3) Guideline Removal of Atropine and Survival after Adult In- Hospital Cardiac Arrest with a Non- Shockable Rhythm. Holmberg M.J, Moskowitz A, Wiberg S, Grossestreuer AV, Yankama T et al. Published 2019.	Study Type/Design; Study Size (N) Retrospective, observational study using data from 2006- 2015 from the Get With The Guidelines - Resuscitation registry (GWTG-R) of IHCA in the USA. An interrupted time- series analysis was used to compare survival before (pre- guidelines) & after (post-guidelines) introduction of the 2010 guidelines. A difference-in- difference approach was used to compare the interrupted time- series results between the non-shockable & shockable cohorts to try & account for potential changes in survival unrelated to guideline removal of atropine. Study looked at 20,499 non-shockable and 3,968 shockable cardiac arrests.	Inclusion criteria: Adults ≥ 18 years of age. IHCA & documented chest compressions for ≥ 2 mins. Use of atropine at any time during cardiac arrest (timing & dose not available in GWTG-R). Exclusion criteria: Visitors Hospital staff	Primary Endpoint and Results (include P value; OR or RR; & 95% CI) The <i>primary outcome</i> was survival to hospital discharge. For the non-shockable cohort, survival rate increased by 0.8% (95%CI: $0.3, 1.3, p < 0.01$) per yr in the pre-guidelines period & by 0.2% (95%CI: $-0.4, 0.8, p = 0.56$) per yr in the post-guidelines period (risk difference: -0.6% [95%CI: $-1.4, 0.2$]per yr, $p = 0.14$). The immediate change in survival after introducing the guidelines was 1.2% (95%CI: $-0.9, 3.3, p = 0.27$). For the shockable cohort, survival rate increased by 2.9% (95%CI: $1.1, 4.7, p < 0.01$) per year in the pre-guidelines period & by 0.1% (95%CI: $-1.6, 1.9, p = 0.89$) per year in the post-guidelines period (risk difference -2.7% [95%CI: $-5.3, -0.2$]per yr, $p = 0.04$). The immediate change in survival after introducing the guidelines was -2.5% (95%CI: $-8.4, 3.3, p = 0.40$) The change over time in survival from the pre-guidelines to the post-guidelines period was not significantly different for the non- shockable compared to the shockable cohort (risk difference: 2.0% [95%CI: $-0.8, 4.8$] per year, $p = 0.17$) The immediate change in survival after introducing the guidelines was also not different between the cohorts(risk difference 3.5% [95%CI: $-2.6, 9.7$], $p = 0.26$). Secondary outcomes - ROSC & favourable functional outcome (CPC score of 1 or 2). The change over time in ROSC from pre- to post-guidelines period was not significantly different for the non-shockable compared to the shockable cohort (risk difference: 1.0% [95%CI: $-1.4, 3.3$] per yr, $p = 0.43$).	Summary/Conclusion Comment(s) The removal of atropine from the 2010 guidelines was not associated with a significant change in survival from IHCA Limitations -Study of only patients with IHCA. Study makes a number of assumptions: -No other intervention targeting only shockable or non- shockable rhythms was implemented near the same time as the 2010 guidelines, and adherence to the 2010 guidelines did not differ for non- shockable and shockable arrests. -The survival trend for patients with a non- shockable rhythm would have changed similar to patients with a shockable rhythm in the absence of guideline removal of atropine. -The difference-in- difference approach provides results with relatively large CIs, so study may have been underpowered to detect small differences in outcomes between the groups. -Although there was an attempt to create two

	The immediate change in ROSC between th pre- & post-guidelines period was also not significantly different for the two cohorts (risk difference: 1.0% [95%CI: -5.0 , 6.9], p = 0.75). Change over time in <i>favorable functional</i> <i>outcome</i> from pre- to post-guidelines period was not significantly different for the non- shockable compared to the shockable cohor (risk difference: 0.3% [95%CI: -2.8 , 3.3] per yr, $p = 0.87$). The immediate change in favourable functional outcome between the pre- & post-guidelines period was also not significantly different for the two cohorts (risk difference: 5.0% [95%CI: -1.6 , 11.5], p = 0.14).	shockable cardiac arrests with high propensity & shockable cardiac arrests with low propensity to receive atropine), there was some overlap in use of
--	--	---

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

The literature search identified 3 observational studies relevant to the question of whether the use of atropine improves outcome after cardiac arrest. One of the studies was prospective and the other two were retrospective. Limitations to the prospective study (Nagao, 2011), are that it used guidelines from 2000, and there was a long time interval from onset of cardiac arrest to drug administration.

For the primary endpoint of favourable neurological outcome at 30 days after cardiac arrest (CPC score of 1 or 2), for patients in asystole, in the multivariable logistic regression analysis, the adjusted OR (AOR) for epinephrine & atropine compared with epinephrine alone was 0.69 (95%CI 0.19– 2.48; P=0.571).

For the patients with PEA, in the multivariable logistic regression analysis the AOR after administration of epinephrine & atropine compared with epinephrine alone was 0.51 (95%CI 0.10–2.48; P=0.040) for 30-day favourable neurological outcome.

For the secondary outcomes of ROSC, survival to hospital admission, and survival at 30 days, results for patients with PEA all suggested that atropine in addition to epinephrine was associated with worse 30-day survival compared to epinephrine alone, however no difference was found in ROSC or survival to hospital admission.

For asystole, atropine was associated with an improvement in ROSC & survival to hospital admission that were both statistically significant, however no difference in survival at 30 days.

In the first of the retrospective studies (Yano et al), a multivariable logistic regression analysis suggested that administration of atropine (within 2 mg) following epinephrine, was an independent predictor of survival to hospital admission for adults with asystolic OHCA. Results for PEA weren't statistically significant (p=0.06).

The second of the retrospective studies (Holmberg et al) was the only study of IHCA. The results did not suggest a significant change in outcome from IHCA with the removal of atropine from the guidelines in 2010, with the outcomes addressed being survival to hospital discharge, ROSC, and survival with favourable functional outcome.

Reference list: (List by ILCOR ref standard (last name first author, year of publication, first page number) and insert hyperlink to all articles identified as relevant (if available on PubMed)

1. SOS-KANTO Study Group: Nagao K, Yago T, Sakamoto T, Koseki K, Igarashi M et al. Atropine Sulfate for Patients With Out-of-Hospital Cardiac Arrest due to Asystole and Pulseless Electrical Activity. *Circ J* 2011; **75**: 580 – 588. doi: <u>10.1253/circj.cj-10-0485</u>

2. Yano T, Kawana R, Yamauchi K, Endo G. and Yasuhiro Nagamine Y. The Additive Effect of Atropine Sulfate during Cardiopulmonary Resuscitation in Out- of-hospital Non-traumatic Cardiac Arrest Patients with Non-shockable Rhythm. American Journal Intern Med. 2019 Jun 15; 58(12): 1713–1721. doi: 10.2169/internalmedicine.1932-18 3. Holmberg M.J, Moskowitz A, Wiberg S, Grossestreuer A.V, Yankama T et al. Guideline Removal of Atropine and Survival after Adult In-Hospital Cardiac Arrest with a Non-Shockable Rhythm. *Resuscitation*. 2019 April ; 137: 69–77. doi:10.1016/j.resuscitation.2019.02.002.

Evidence Update Worksheet

Use of advanced airway during cardiac arrest ALS 3300, 3301, 3302, 3303, 3304

Worksheet author(s): Ari Moskowitz, Luke Andrea Task Force: ALS Date Submitted to SAC rep for peer review and approval: Nov 3, 2023 SAC rep: Eric Lavonas

PICOST / Research Questions:

- Population: Adults with cardiac arrest from any cause and in any setting (in-hospital or out-of-hospital)
- Intervention: A specific advanced airway management method during cardiac arrest
- Comparator: A different advanced airway management method or no advanced airway management method during cardiac arrest
- Outcome: Resuscitation process metrics, airway process metrics, ROSC, survival, or survival with favorable neurological outcome at discharge/28 days or longer
- Study Type: Randomized and non-randomized clinical trials, sub-analysis of clinical trials, observational studies with a control group (e.g. cohort studies, case control studies). Additional details below.
- Timeline: January 9, 2019 to August 16, 2023

NOTE: This updated PICOST replaces prior #3300, #3301, #3302, #3303, and #3304

Year of last full review: SysRev 2018, EvUp 2019 (Search January 9th, 2019)

Current ILCOR Consensus on Science and Treatment Recommendation for this PICOST:

We suggest using bag-mask ventilation or an advanced airway strategy during CPR for adult cardiac arrest in any setting (weak recommendation, low to moderate-certainty evidence).

If an advanced airway is used, we suggest a supraglottic airway for adults with out-of-hospital cardiac arrest in settings with a low tracheal intubation success rate (weak recommendation, low certainty of evidence).

If an advanced airway is used, we suggest a supraglottic airway or tracheal intubation for adults with out-of-hospital cardiac arrest in settings with a high tracheal intubation success rate (weak recommendation, very low certainty of evidence).

If an advanced airway is used, we suggest a supraglottic airway or tracheal intubation for adults with in-hospital cardiac arrest (weak recommendation, very low certainty of evidence).

Search strategy: (for a new PICOST should be outlined here as per Evidence Update Process)

Pubmed

(("airway management"[Mesh] OR "Intubation, Intratracheal"[Mesh] OR "airway device" [TIAB] OR "Laryngeal Masks"[Mesh] OR "airway"[TIAB] OR "intubation"[TIAB] OR "supraglottic"[TIAB] OR "Supraglottic airway" [TIAB] OR "SGA" [TIAB] OR "extraglottic" [TIAB] OR "laryngeal"[TIAB] OR

"perilaryngeal"[TIAB] OR "tracheal"[TIAB] OR "i-gel"[TIAB] OR "king tube"[TIAB] OR "Streamlined liner of the pharynx airway"[TIAB] OR "SLIPA"[TIAB] OR "baska"[TIAB] OR "3gLm"[TIAB] OR "cobra tube"[TIAB] OR "cobra LMA"[TIAB] OR "lma"[TIAB] OR "proseal"[TIAB] OR "ILMA"[TIAB] OR "bagvalve mask"[TIAB] OR "bag mask"[TIAB] OR "self inflating bag" OR "Ambu"[TIAB] OR "ambu bag"[TIAB]) AND ("heart arrest"[MESH] OR "cardiac arrest"[MESH] OR eCPR [TIAB] OR "return of spontaneous circulation"[TIAB] OR "ROSC"[TIAB] OR "cardiopulmonary resuscitation"[TIAB] OR "CPR"[TIAB] OR "cardiovascular arrest"[TIAB] OR "asystole"[TIAB] OR "pulseless electrical activity"[TIAB] OR "ventricular tachycardia"[TIAB] OR "ventricular fibrillation"[TIAB] OR "cardiopulmonary arrest"[TIAB] OR "Advanced cardiac life support"[TIAB] OR "ACLS"[TIAB] OR "heart massage"[TIAB] OR "out-of-hospital cardiac arrest" [TIAB] OR "in-hospital cardiac arrest" [TIAB] OR "OHCA" [TIAB] OR "IHCA" [TIAB] OR "cardiac massage"[TIAB] OR "chest compression"[TIAB]) NOT ("animals"[TIAB] OR "veterinary medicine"[MESH] OR "sleep" [TIAB] OR "apnea" [TIAB] OR "editorial"[pt] OR "Case Reports"[ptyp]))

Database searched: PubMed Time Frame: Jan 9th 2010-August 16th, 2023 Date Search Completed: August 16th, 2023 Search Results (Number of articles identified and number identified as relevant):

Total abstracts: 1,041 Total relevant: 59 Total RCTs: 4 Total RCT sub-analysis: 9 Total Observational Studies: 46 Total Other: 0

Summary of Evidence Update:

For the purposes of this evidence update, the PICO will be separated into the following topic areas:

- 1) Basic vs. advanced airway management
- 2) Comparison of advanced airway devices (e.g. SGA vs. ETI, comparison of different SGAs)
- 3) Approach to endotracheal intubation
 - a. Direct laryngoscopy vs. alternative endotracheal intubation approaches (e.g. video laryngoscopy)
- 4) Timing of advanced airway management

A breakdown of relevant studies by question is below:

Question Number	Observational	RCT	RCT sub-analysis	Other
1	13	0	4	0
2	21	2	4	0
3	6	2	0	0
4	6	0	1	0

For the first two topic airways, only data originating from randomized clinical trials (either as a primary analysis or as a secondary analysis of an existing clinical trial) or data from relevant guidelines/systematic reviews will be included in this evidence update. This decision was made as substantial evidence already exists in these topic areas from dedicated randomized clinical trials. Data from observational studies will not be included in this evidence update.

For the second two topics, we will include data from observational studies in addition to data from randomized trials.

After exclusion of observational studies for questions 1 and 2, twenty-five studies were included in full text review:

Question Number	Observational	RCT	RCT sub-analysis	Other
1	0	0	4	0
2	0	2	4	0
3	6	2	0	0
4	6	0	1	0

One additional study for Question #3 was identified outside of the original search and has been included.

Question 1: Basic vs. Advanced Airway Management

Acronym ; Author; Year Publishe d	Aim of Study; Study Type; Study Size (N)	Patient Population (inclusion/exclusion)	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Cerecada -sanchez; 2021(1)	Aim: Compare BVM-only airway management to advanced airway management with an iGel SGA during adult, non- traumatic OHCA Design: Cluster- randomized trial; 4 BLS units with total n=23 OHCA	Adult OHCA Inclusion criteria: Attended to by one of the trained EMTs in the selected BLS units, non-traumatic cardiac arrest, aged >18 years, cardiac arrests assisted by BLS units initially, or cared for by BLS unit unable to perform advanced airway management. Exclusion criteria: 1) estimated weight <50 kg, 2) oral cavity opening <2 cm or trismus 3) already being treated by medical or healthcare professionals with advanced airway techniques 4) cardiac arrest due to airway obstruction 5) patients with Return of Spontaneous Circulation (ROSC) upon the arrival of the BLS team 6) obvious signs of death Only patients with capnographic data were analyzed	BVM (n=9) compared with SGA (n=14)	End-tidal CO2 was higher during resuscitation in patients treated with SGA as compared to BVM (mean values 16.3 (±7.1) mmHg in the control group and 27.4 (±15.5) mmHg in the SGA group, p<0.05).	First pass success rate for SGA was 92.9%. 2 instances of vomiting in the SGA group. None in the BVM group.
Malinver ni; 2019(2)	Aim: Compare chest compression fraction in patients receiving BVM as compared to endotracheal intubation. Design: Post-hoc secondary analysis of a single center's data from the CAAM trial; Total N=112 OHCA	Adult OHCA enrolled in the CAAM trial, from a single center. Inclusion Criteria: Adult OHCA Exclusion Criteria: Suspected massive aspiration, DNR order, known pregnancy or imprisonment.	n=54 in BVM and n=58 in ETI	Chest compression fraction showed no difference overall between the two groups (Median with IQR with BVM vs ETI: 0.880 (0.836–0.902) vs 0.890 (0.850– 0.920), p=0.19)	The no flow time associated with ventilation was higher in the BVM group compare to the ETI group (127.5 vs 32 s; p < 0.001)

Baekgaar d; 2020(3)	Aim: Compare early onset pneumonia in patients receiving BVM as compared to endotracheal intubation. Design: Post-hoc secondary analysis from the CAAM trial; Total N=409 OHCA patients who survived to 12 hours	Adult OHCA patients enrolled in CAAM trial and survived to 12 hours. Additional inclusion/exclusion for CAAM trial above.	n=202 BVM and n=407 ETI	No difference in the occurrence of early onset pneumonia) BVM: 53%, ETI: 53%, Odds Ratio 1.0 [0.7-1.5], p = 1.0)	There were no differences between the two groups in terms of ICU length of stay, the incidence of septic or cardiogenic shock, or mechanical ventilator free- days or CPC 1–2 at 28 days. In-hospital mortality was also comparable (BVM: 77%; ETI: 80%, Odds Ratio 1.3 [0.8–2.0], p = 0.40)
Lupton; 2020(4)	Aim: To compare patients receiving any AAM to those receiving BVM onl. Design: Post-hoc secondary analysis of PART trial; N=2,567	OHCA patients enrolled in PART*. Inclusion Criteria: Adult, non- traumatic OHCA. Exclusion Criteria: Patient who received initial clinical care with EMS agencies capable of AAM but who were not part of the trial.	n=282 receiving BVM only, n=156 rescue BVM, and n=2,129 receiving some advanced airway	Compared to AAM, BVM-only patients had similar ROSC (odds ratio [OR] = 1.29, 95% confidence interval [CI] = 0.96 to 1.73), but higher 72-hour survival (OR = 1.96, 95% CI = 1.42 to 2.69), survival to discharge (OR = 4.47, 95% CI = 3.03 to 6.59), and neurologically intact survival (OR = 7.05, 95% CI = 4.40 to 11.3).	A secondary analysis of patients who received BVM as rescue after failed AAM revealed similar ROSC (OR = 0.73, 95% CI = 0.47 to 1.12) and 72-hour survival (OR = 1.08, 95% CI = 0.66 to 1.77) but higher survival to discharge (OR = 2.15, 95% CI = 1.17 to 3.95) and neurologically intact survival (OR = 2.64, 95% CI = 1.20 to 5.81) favoring BVM-rescue.

BVM= bag-valve mask; ETI = endotracheal intubation; SGA = supraglottic airway; AAM = advanced airway management

*PART inclusion criteria: adult, nontraumatic, OHCA

PART exclusion criteria: known pregnancy, known prisoners, traumatic arrest etiology, major bleeding or exsanguination, advanced airway insertion prior to participating EMS agency arrival, and preexisting tracheostomy

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

The literature searched identified one small randomized clinical trial and three post-hoc analyses of previously completed randomized control trials. As noted, observational studies were not reviewed for this question given the existence of large, randomized clinical trials.

The study by Cereceda-Sanchez et. al. was a cluster randomized clinical trial conducted among four basic life support units on the Island of Mallorca. Patients with out-of-hospital cardiac arrest were enrolled and cluster-randomized to receive bag-valve mask only or supraglottic airway placement with an i-Gel. A total of 23 patients were enrolled with 9 in the BVM only group and 14 in the i-Gel group. The primary outcome of end-tidal CO2 was higher in the i-Gel group. There was no statistically significant difference in clinical outcomes.

The remaining post-hoc analyses of completed randomized control trials add little to the comparison of BVM to advanced airway placement. Given their post-hoc nature, all of these studies carry substantial risk of confounding and bias.

Given the above, there is not sufficient new evidence to proceed to a systematic review for this question.

Question 2: Comparison of advanced airway devices (e.g. SGA vs. ETI, comparison of different SGAs)

Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population (inclusion/exclusion)	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
PRINCESS; Tjerkaski; 2022(5)	Aim: Compare patients in the PRINCESS randomized trial who received intubation against those who received SGA. Design: Post-hoc secondary analysis of PRINCESS trial; N for the subanalysis = 328	Patients randomized to intervention arm of PRINCESS. Inclusion: Bystander witnessed, adult OHCA. Exclusion: Age >80 years, traumatic cardiac arrest, hypothermia at time of cardiac arrest, barrier to placing transnasal cooling catheters, existing DNR order, terminal illness, pregnancy, coagulopathy, need for home supplemental oxygen, EMS response time more than 15 minutes. Patients for whom airway data was missing and patients assigned to the cooling intervention but who did not receive it	ETI group (n=259, 79%) and SGA group (n=63)	CPC 1-2 at 90 days (13.5% in SGA and 13.7% in ETI; OR 1.43, 95% CI 0.64–3.01)	No difference in survival at 90 days in ETI vs. SGA group (OR 1.26, 95% CI 0.57–2.55), survival with complete neurologic recovery at 90 days (OR 1.17, 95% CI 0.52–2.73) or hospital admission following sustained ROSC (OR 0.88, 95% CI 0.50–1.52). Faster time to airway in SGA group (8 minutes vs. 4 minutes, p<0.01). Numerous limitations, including biases introduced through selection of advanced airway approach.
SAVE; Lee; 2022(6)	Aim: Comparison of ETI to SGA. Design: Multicenter, cluster-randomized control trial; Total N=936	were excluded. Inclusion: Nontraumatic OHCA; aged 20 years or older; treated by the participating emergency medical service agencies; required advanced airway management. Exclusion: (1) resuscitation deemed inappropriate (rigor mortis or livor mortis), (2) not suitable for ETI (ie, the inability to open the patient's mouth wide enough for laryngoscope insertion), (3) not suitable for SGA (eg, preexisting tracheostomy), (4) cardiac arrest during transportation to the hospital, (5) family's do- not-resuscitate request at the scene, (6) ROSC at the scene and no need for advanced airway support, and (7) airway devices (ETI or SGA) had been established before	n=517 ETI and n=419 SGA	Sustained ROSC (>2 hours) was 26.9% (139 of 517 patients) in the ETI group vs 25.8% (108 of 419 patients) in the SGA group. The OR of sustained ROSC was 1.02 (95% CI, 0.98-1.06) for the ETI group compared with the SGA group	The OR of the secondary outcome of prehospital ROSC was 1.04 (95% Cl, 1.02-1.07) for the ETI group compared with the SGA group. Other secondary outcomes, including survival to hospital discharge (OR, 1.00; 95% Cl, 0.94-1.06) and good neurological outcome (cerebral performance category score ≤2) (OR, 0.99; 95% Cl, 0.94-1.03). Limitations: Exclusion of patients not receiving any advanced airway management may result in bias as SGAs are placed earlier in general. Relatively small sample size.

PART; Wang; 2021(7)	Aim: Compare CPR metrics in patients receiving SGA vs. ETI Design: Post-hoc secondary analysis of PART trial; N=1996 in subanalysis	Patients randomized in PART with CPR quality metrics available. PART inclusion and exclusion described previously.	n=1001 SGA and n=995 ETI	Mean CC fraction (SGA 88% vs. ETI 87%, p = 0.05)	CPR rate (SGA 114 vs. ETI 114 compressions per minute (cpm), p = 0.59) were similar between SGA and ETI. Median number of CC interruptions were: SGA 11 vs. ETI 12 (p = 0.001). Total CC interruption duration was lower for SGA than ETI (LT 160 vs. ETI 181 s, p = 0.002). Limitations: Post-hoc analysis. Nearly half of originally randomized patients without CPR metric data.
AIRWAYS 2; Benger; 2020(8)	Aim: Compare long- term cardiac arrest outcomes in patients randomized to ETI vs. SGA. Design: Sub-analysis of Airways 2 trial; N=9,296	Patients randomized as part of the AIRWAYS-2 trial. Inclusion: Adult, nontraumatic OHCA. Exclusion: Prisoner. Previously recruited into the trial. Advanced airway already in place. Small mouth opening.	Follow-up at 3 months: 300/396 (153/194 ETI, 147/202 SGA) Follow-up at 6 months 317/388 (159/190 ETI, 158/198 SGA)	No significant differences were found between the two treatment groups in the primary outcome measure (mRS score at 3 months: odds ratio for good recovery in SGA vs. ETI 0.89, 95% CI 0.69–1.14; 6 months OR 0.91, 95% CI 0.71– 1.16).	No differences in Q-5D-5L scores at 3 and 6 month outcomes based on randomization group in the Airways-2 trial. Limitations: Not all patients agreed to follow-up.
PART; Wang; 2019(9)	Aim: Comparison of SGA vs. ETI. Design: Post-hoc Bayesian re-analysis of PART trial; Total N=3004	Patients randomized in PART trial. Inclusion and exclusion previously described.	SGA n=1505, ETI n=1499	Survival to 72-hours from the index arrest: SGA 275 (18.3%) vs ETI (15.4%). In Bayesian analysis with neutral prior distribution, SGA was better than intubation (risk difference 1.8% [95% credible interval – 0.9% to 4.5%], posterior probability 91%)	All below comparisons are SGA vs. ETI. Bayesian neutral prior: - Hospital survival 1.4% [95% CrI – 0.4% to 3.4%], posterior probability 93%; - Hospital survival with favorable neurologic status 0.7% [95% CrI –0.5% to 2.1%], posterior probability 86% Bayesian skeptical prior - 72-hour survival risk difference 1.7% [95% CrI –0.9% to 4.3%], posterior probability 89% - Hospital survival 1.3% [95% CrI – 0.5% to 3.3%], posterior probability 91% - Hospital survival with favorable neurologic status risk difference (0.6% [95% CrI –0.5% to 2.0%], posterior probability 82%) Limitations: Same limitations as PART trial (low insertion success rate). Limitations of Bayesian analysis with prior distributions based on previous studies (mostly retrospective observational).
Paramedic 2; Deakin; 2021(10)	Aim: Compare resuscitation metrics between SGA vs. ETI. Design: Post-hoc secondary analysis of Paramedic 2 trial; n=286 in subanalysis	Patients randomized in PARAMEDIC 2 with CPR quality metrics available. Inclusion: Adult OHCA. Exclusion: Pregnancy. Anaphylaxis or asthma as cause of arrest. Epinephrine prior to EMS arrival.	n=67 SGA and n=78 ETI	Mean compression rate in first 5 minutes (106.9 (13.3) SGA vs 104.2 (16.2) ETI)	No difference in compression rate or fraction between SGA and ETI groups. Limitations: Post-hoc analysis in small cohort of those originally randomized.

OHCA = Out of hospital cardiac arrest ; ETI = Endotracheal Tube; CPC = Cerebral Performance Category; SGA = Supraglottic Airway; DNR = Do Not Resuscitate; EMS = Emergency Medical Services; ROSC = Return of Spontaneous Circulation; OR = Odds Ratio

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

The literature for this question contains one randomized clinical trial, four post-hoc analyses of previously completed randomized clinical trials, and one analysis of long-term outcome data from a randomized clinical trial. The section did not include observational studies.

The SAVE trial by Lee et. al. was a multicenter cluster randomized clinical trial using emergency medical service agencies in Taiwan. Non-traumatic, out-of-hospital cardiac arrests were included and cluster-randomized to receive endotracheal intubation or supraglottic airway (iGel). They enrolled 936 total patients with 517 receiving ETI and 419 receiving SGA. There was no difference in the primary outcome of sustained ROSC (≥2 hours).

The long-term outcomes from the AIRWAYS-2 trial from Benger et. al. followed the initially randomized patients and showed no statistically significant difference in mRS at 3 or 6 months, but was limited as less than half of the patients who survived agreed to be followed up. The post-hoc secondary analyses of other randomized trials carried substantial risk of bias, contributing little to the comparison of ETI and SGA for advanced airway management in cardiac arrest.

Given the above, there is not sufficient new evidence to proceed to a systematic review for this question.

Question 3: Approach to endotracheal intuk	ation

Randomized	l Control Trials				
Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population (inclusion/exclu sion)	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Kluj; 2023(11)	Aim: To compare two different direct laryngoscopy tools (intubrite vs. macintosh) Design: Randomized control trial enrolling 86 patients.	Inclusion: Adult OHCA enrolled between 2016 and 2020. Exclusion: traumatic arrest, primary use of SGA by the paramedics.	intubrite (42) compared with macintosh (44)	Mean time to first pass success 13.49 seconds with intubrite and 15.55 seconds with macintosh (mean difference of 2.05s for first pass success (p <0.05))	First pass success for intubrite 34/42 (80.9%) vs. 29/44 (64.4%) for macintosh, p=0.08. Limitations: 1) small sample size 2) lack of blinding 3) not clear how primary outcome was measured in patients without successful first pass
Szarpak; 2022(12)	Aim: To compare VieScope (direct laryngoscopy with bougie introducer) to direct laryngoscopy with macintosh blade. Design: Multicenter, randomized trial enrolling 90 patients	Inclusion: Adult OHCA patients with suspected or confirmed COVID-19. Exclusion: Patients where the treating team thought direct laryngoscopy would be impossible were excluded.	Vie Scope (45) compared with macintosh (45)	First intubation success rate 93.3% with Vie Scope vs 51.1% with macintosh, OR = 13.39; 95%CI: 3.62, 49.58; <i>p</i> = 0.001.	ETI time (time to success) was lower using the Vie Scope® laryngoscope compared with the Macintosh laryngoscope (49 ± 8.5 vs. 97 ± 41 s respectively; mean difference (MD) = -48.00; 95% confidence interval (CI): -60.23, -35.77; p < 0.001). Limitations include: 1) small sample size 2) nonblinded 3) risk of bias as exclusion criteria are subjective

Kim; 2016 (13)	Aim: To compare	Inclusion: Adult	Direct	Intubation success as	No difference between the DL and VL:
	direct vs. video	IHCA or OHCA.	laryngoscopy vs.	defined by no esophageal	estimated median time 51 (36–67) vs. 42
	laryngoscopy.	Intubation	video	intubation and no change	(34–62) s, respectively (p = 0.143). No
		performed by	laryngoscopy	in operator (DL 92.8%	difference in esophageal intubation. Longer
	Design: Single	experienced	(GlideScope)	vs.VL 95.8%; p = 0.490)	duration of cardiac compression interruption
	center,	airway manager.			was found during ETI using DL compared with
	randomized trial				VL (4.0 vs 0.0 s, respectively; p < 0.001)
	including 140	Exclusions:			
	intubations in	Traumatic			Limitations include: 1) small sample size 2)
	the ED	arrest, patients			single center 3) A number of exclusions may
		wearing a			result in bias (e.g. excluding patients who did
		cervical collar to			not undergo intubation)
		protect a cervical			
		injury, ETIs with			
		data loss or poor			
		quality of			
		recording			

OHCA = out of hospital cardiac arrest; SGA = supraglottic airway

Study Acronym;	Study	Patient Population	Endpoint Results	Summary/Conclusion Comment(s)
Author; Year Published	Type/Design; Study Size (N)	(inclusion/exclusion)	(Absolute Event Rates, P value; OR or RR; & 95% CI)	
Risse; 2023(14)	Aim: Comparison of video laryngoscopy against direct laryngoscopy Design: Retrospective observational study using the German resuscitation registry; total N 14,387 patients	Inclusion: Adult OHCA who underwent ETI. Exclusion: Excluded traumatic arrest, use of supraglottic airway, death at scene without CPR.	CPC1/2 status among VL group patients [227/2201 (10.3%) compared with DL 987/12,186 (8.1%); p < 0.001, aOR = 1.34, 95% CI = 1.12–1.60]	OHCA patients undergoing ETI with VL were more likely to survive with good neurologic outcome than those undergoing ETI with DL. Biases may include that use of DL may reflect other resuscitation practices that may be associated with worse outcomes, differences in training for those certified to do DL vs. VL, patients with soiled airway may be more likely to undergo DL, there is no data on patients who did not undergo ETIso any differences in timing of these two approaches is incompletely understood.
Santou; 2023(15)	Aim: Comparison of video laryngoscopy against direct laryngoscopy Design: Retrospective observational study using the Japanese national registry with a focus on Hiroshima prefecture; total N 885patients	Inclusion: Adult OHCA where an endotracheal tube was placed.	The success rate was 94.1% (490/521) in the VL group and 89.3%(325/364) in the DL group (RR, 1.05;95%Cl, 1.01–1.10, P = 0.01).	OHCA patients undergoing ETI with VL were more likely to be successfully intubated than those for whom DL. was used. Biases may include that use of DL may reflect other resuscitation practices that may be associated with worse outcomes, differences in training for those certified to do DL vs. VL, patients with soiled airway may be more likely to undergo DL, there is no data on patients who did not undergo ETIso any differences in timing of these two approaches is incompletely understood.

Okamoto; 2019(16)	Aim: Comparison of video laryngoscopy against direct laryngoscopy Design: Analysis of data from the prospective, multicenter, observational second Japanese Emergency Airway Network study (JEAN-2 study); Total N=3,360	Inclusion: Adult ED cardiac arrests who underwent ETI. Exclusion: Excluded for any intubation other than video laryngoscopy or direct laryngoscopy (example: fiberoptic), intubations where an adjunctive device was used (example: bougie).	First attempt success rate was 78% (480/613) in the VL group and 70% (1913/2747) in the DL group. OR for first attempt success rate with VL compared with DL 1.61 (95%CI 1.26– 2.06; P < 0.001). Adjusted OR 1.33 (95%CI 1.03–1.73; P = 0.03).	ED patients undergoing ETI with VL were more likely to be successfully intubated on the first attempt. Biases may include indication/selection bias (they performed a propensity score sensitivity analysis), differences in unmeasured factors like the skill of intubators, and between hospital practice variations (used GEE to account for clustering). They do not have information on timing, or information for those who did not receive intubation, so there is possible resuscitation time bias.
Huebinger; 2020(17)	Aim: Comparison of video laryngoscopy against direct laryngoscopy Design: Retrospective observational study using the ESO pre-hospital database; total N 22,132 patients	Inclusion: Adult OHCA Exclusion: Excluded patients with 1) intubation using other approaches besides DL or VL 2) IHCA 3) key missing data	VL FPS was higher than DL (75.7% vs. 69.5%, difference of 6.3%; 95% Cl 4.97.6%, p < 0.001), and overall success rate for VL was higher than DL (80.8% v 73.1%, difference of 7.7%; 95% Cl 6.4% 9.0%, p < 0.001). Utilizing a mixed model analysis, we found that VL was associated with increased odds of first pass success (aOR 1.5, 95% Cl 1.31.6) as well as overall intubation success (aOR 1.6, 95% Cl 1.41.7), compared with DL. VL used on first attempt was not associated with increased rate of ROSC (aOR 1.0, 95% Cl 0.91.1) or sustained ROSC (aOR 1.0, 95% Cl 0.91.1) compared with DL. Additionally, overall VL use was not associated with increased odds of ROSC (aOR 1.0, 95% Cl 0.991.1) or sustained ROSC (aOR 1.0, 95% Cl 0.91.1) compared with DL.	OHCA patients intubated using VL had higher FPS, but no difference in rates of ROSC. Biases may include that use of DL may reflect other resuscitation practices that may be associated with worse outcomes, differences in training for those certified to do DL vs. VL, patients with soiled airway may be more likely to undergo DL, there is no data on patients who did not undergo ETIso any differences in timing of these two approaches is incompletely understood.
Bonnette; 2020(18)	Aim: Compare bougie assisted with non-bougie assisted intubation during cardiac arrest. Design: Subanalysis of the PART trial only including those who underwent ETI; total N=1,227 included in this subanalysis	Patients enrolled in PART who underwent endotracheal intubation	First-pass ETI success did not differ between Bougie-assisted and non- Bougie ETI (53.1% vs. 42.8%; adjusted OR 1.12, 95% Cl: 0.97-1.39). ETI overall success was slightly higher in the Bougie-assisted group (56.2% vs. 49.1%; adjusted OR 1.19, 95% Cl: 1.01-1.32). Time to endotracheal tube placement or abandonment was longer for Bougie-assisted than non-Bougie ETI (median 13 vs. 11 min; adjusted HR 0.63, 95% Cl: 0.45- 0.90). While survival to hospital discharge was lower for Bougie- assisted than non-Bougie ETI (3.6% vs. 7.5%; adjusted OR 0.94, 95% Cl: 0.92-0.96), there were no differences in ROSC, 72-h survival or hospital survival or hospital survival with favorable neurologic status.	Use of bougie was associated with slightly higher ETI success, but longer airway placement times and possibly lower survival. Efforts were made to control for various factors including clustering by site and demographics. Confounding by indication may have still biased the results.
Risse; 2020(19)	Aim: Comparison of video laryngoscopy against direct laryngoscopy	Patients undergoing non-traumatic OHCA resuscitation with BLS	In the group using VL, 82% rated visualization of the glottis as CL 1&2 versus 55% in the DL group (<i>p</i> = 0.02). Despite better visualization of the larynx, there was no statistically significant difference in successful ETI	Video laryngoscopy resulted in better glottic views. There was better first pass success in the video laryngoscopy group, but this did not reach statistical significance.

	between VL and DL (GVL 75% vs. DL	
Design:	68.1%, <i>p</i> = 0.63).	
Propspective		
observational		
cohort study		
among 32		
paramedics at a		
single center.		
EMS personnel		
on a vehicle		
equipped with		
video		
laryngoscope		
were asked to		
use it as first		
choice: N=97		

OHCA = out of hospital cardiac arrest; ETI = endotracheal intubation; CPR = cardiopulmonary resuscitation; CPC = cerebral performance category; aOR = adjusted odds ratio; DL = direct laryngoscopy; VL = video laryngoscopy; FPS = first pass success; GEE = generalized estimating equation

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

The literature review for this question identified six observational studies and three randomized clinical trials.

The observational studies generally explored the comparison between video and direct laryngoscopy during cardiac arrest. Across all five observational studies focused on this question, video laryngoscopy was either superior or neutral for a range of outcome extending from glottic view to hospital survival. All of the observational studies were potentially confounded by indication bias and selection bias, thus should only be considered hypothesis generating. One study, a subanalysis of the PART trial including patients who underwent endotracheal intubation, found that use of bougie was associated with higher overall resuscitation success but longer airway placement times and possibly lower survival.

Two of the randomized trials compared proprietary laryngoscopy tools against direct laryngoscopy in small cohorts. In general, findings favored the proprietary tools over direct laryngoscopy. In one trial at a single center, there was no difference in the primary outcome of intubation success comparing direct and video laryngoscopy when used by experienced operators. Patients who were intubated with direct laryngoscopy had longer overall pause durations as compared to video laryngoscopy.

Given the above, there is sufficient new evidence to proceed to a systematic review for this question.

Question 4: Timing of advanced airway management

Randomized Control Trials					
Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population (inclusion/exc lusion	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events

	Aime Come and		022 Jammaral L. H.	Timing of law see 11 h	Deletive eccenders and a sint of The law of
PART; Okubo;	Aim: Compare	OHCA patients	923 laryngeal tube	Timing of laryngeal tube	Relative secondary endpoints: Timing of
2022(20)	ETI placement	enrolled in	compared to 923	insertion attempt was not	laryngeal insertion and timing of ETI insertion
	to no	PART.	matched at risk	associated with survival to	were not associated with neurologic outcomes
	advanced		patients	hospital discharge: 0 to	at hospital discharge or 72-hour survival.
	airway	Exclusions:	A laryngeal tube is a	lesser than 5 minutes	
	placement,	patients with	specific type of SGA	(RR=1.35, 95% CI 0.53 to	Study limitations: Limited by post-hoc nature
	and compare	EMS-	that was used during	3.44); 5 to lesser than 10	of the study design and introduction of
	laryngeal tube	witnessed	the PART trial.	minutes (RR=1.07, 95% CI	selection bias.
	placement to	out-of-		0.66 to 1.73); 10 to lesser	
	no advanced	hospital	776 ETI compared to	than 15 minutes (RR=1.17,	
	airway	cardiac arrest,	766 matched at risk	95% CI 0.60 to 2.31); or 15	
	placement	unknown age,	patients	to lesser than 20 minutes	
	during adult,	unknown time	h	(RR=2.09, 95% CI 0.35 to	
	nontraumatic	of advanced		12.47) after advanced life	
	OHCA.	life		support arrival.	
	oner.	support EMS		support arrival	
	Design: Post-	arrival,		Timing of ETI was also not	
	-	unknown time		associated with survival to	
	hoc secondary				
	analysis from	of the first		hospital discharge: 0 to	
	the PART trial;	laryngeal tube		lesser than 5 minutes	
	Total N=2,146	or		(RR=0.50, 95% CI 0.05 to	
		endotracheal		4.87); 5 to lesser than10	
		intubation		minutes (RR=1.20, 95% CI	
		attempt,		0.51 to 2.81); 10 to lesser	
		negative value		than15 minutes (RR=1.03,	
		in an interval		95% CI 0.49 to 2.14); 15 to	
		between		lesser than 20 minutes	
		advanced life		(RR=0.85, 95% CI 0.30 to	
		support arrival		2.42); or more than/equal to	
		and time of		20 minutes (RR=0.71, 95% CI	
		the first		0.07 to 7.14).	
		laryngeal tube		0.07 to 7.14).	
		or			
		endotracheal			
		intubation			
		attempt,			
		unknown time			
		of time-			
		dependent			
		covariates			
		(shock			
		delivery after			
		advanced life			
		support			
		arrival,			
		epinephrine			
		administration			
		, and			
		departure			
		from the			
		scene),			
		negative			
		values in			
		intervals			
		between			
		advanced life			
		support arrival			
		and the time-			
		dependent			
		dependent			
		dependent covariates, or			
		dependent covariates, or unknown			
		dependent covariates, or unknown survival to			
		dependent covariates, or unknown			

ETI = endotracheal intubation; SGA = supraglottic airway; OHCA = out-of-hospital cardiac arrest; EMS = emergency medical services

Observation	Observational Studies						
Author; Year Published	Study aim; Study design; Study Size (N)	Patient Population (inclusion/exclusion)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)			
Nakagawa; 2022(21)	Aim: To evaluate the association between the timing of advanced airway management and neurological outcomes. Time considered on a linear scale of 1-minute increments. Design: Retrospective observational study using the Japanese national registry; Total N=182,913.	Patient population was OHCA who underwent advanced airway management (SGA or ETI). Inclusion: OHCA, underwent advanced airway management. Exclusion: age < 8 years, age ≥ 118 years, unknown initial electrocardiogram rhythm, missing time variables and negative or outlying data (emergency call-to-patient contact interval > 30 min, patient contact-to-hospital arrival interval > 90 min, patient contact-to- advanced airway management performance >30 min), patients who achieved a return of spontaneous circulation before EMS contact	Shockable initial rhythms: 1-minute unit increases in time from patient contact to the initiation of advanced airway management with an SGA or ETI were negatively associated with CPC 1–2 at one month (aOR, 0.92; 95% CI, 0.90–0.93). Non-shockable initial rhythms: 1-minute unit increases in time from patient contact to the initiation of advanced airway management with an SGA or ETI were negatively associated with CPC 1–2 at one month (AOR, 0.96; 95% CI, 0.95– 0.96).	Increases in time from patient contact to the initiation of advanced airway management was associated with worse neurologic outcomes. Hypothesis generating only, and subject to a number of biases (eg resus time bias). Note that delays in airway management may reflect delays in other elements of care as well.			
Daorattanacha i; 2021(22)	Aim: To compare survival to hospital discharge (and neurologically favorable survival) between early (≤2min) and late (>2min) endotracheal intubation for cardiac arrest in the ED. Design: Retrospective observational study in a single emergency department; Total N=416.	Patient population was adult ED cardiac arrests with non-shockable rhythms that had been intubated. Inclusion: adult patients ≥18 years old, cardiac arrest in the emergency department, an initial non-shockable rhythm, intubated during CPR. Exclusion: do not attempt resuscitation order, intubation prior to cardiac arrest, out of hospital intubation, no advanced airway placed during the arrest, referral of patient to a different hospital after resuscitation, missing data on advanced airway.	Survival to discharge occurred in 23 (11.00%) of those who were intubated early (≤ 2 minutes after the start of chest compressions) and 14 (6.80%) of those who were intubated late (>2 minutes after the start of chest compressions) (p = 0.168). When adjusted for potential confounders, AOR = 1.28; 95% Cl, 0.59–2.76. Discharge with favorable neurologic function (CPC of 1-2) occurred in 13 (6.25%) of those who were intubated early and 6 (2.91%) of those who were intubated late (p = 0.157). When adjusted for potential confounders, AOR = 1.68; 95% Cl, 0.52–5.45. ROSC occurred in 106 (50.72%) of those who were intubated early and 98 (47.34%) of those who were intubated late (p = 0.094).	No difference in survival between early (≤2 minutes after the start of chest compressions) and late (>2 minutes after the start of chest compressions) intubation during cardiac arrest with non-shockable rhythms in the ED Limitations: Numerous potential biases, including resuscitation time bias. Small sample size from a single center.			

Page 19 of 89

Okubo;	Aim: To	Patient population was	Advanced airway placement within the	Improved survival to 1 month with advanced
2022(23)	evaluate the	adult OHCA who	first 15 minutes was associated with	airway management within the first 15
	association	underwent advanced	better 1-month survival for nonshockable	minutes of the arrest compared to those who
	between the	airway management.	rhythms.	did not receive advanced airway management
	timing of		No statistically significant association for	The association was not seen after 15 minutes
	prehospital	Inclusion: age ≥18,	shockable rhythms.	
	advanced	cardiac arrest before		No impact on neurologic outcomes, or for
	airway	EMS arrival, cardiac	Shockable rhythms; risk ratios and 95%	patients with shockable rhythms.
	management	arrest for which EMS	confidence intervals of 1-month survival	·····
	and 1-month	providers attempted	for advanced airway placement as	
	survival.	resuscitation, cardiac	compared to no advanced airway	Limitations: Well done observational study,
		arrest attended by an	placement:	using risk-set matching within specified time
	Design:	emergency life-saving	 1.01 (0.89–1.15) between 0 and 5 	periods to reduce resuscitation time bias.
	Retrospective	technician.	minutes	
	observational	technician:	 1.06 (0.98–1.15) between 5 and 10 	
	study using		minutes	
	the Japanese	Exclusion: age outliers	 0.99 (0.87–1.12) between 10 and 15 	
	national	(≥120 years), unknown	minutes	
	registry; Total	initial rhythms,	• 0.74 (0.59–0.92) between 15 and 20	
	N=424,260	inappropriate	minutes	
		resuscitation interval	• 0.61 (0.37–1.00) between 20 and 25	
		variables, unknown time-	minutes	
	Ultimately	dependent or time-	• 0.73 (0.26–2.07) between 25 and 30	
	analyzed	independent covariates	minutes	
	175,102 who	[interval	minutes	
	received an	between initiation of CPR	Nonchackable rhythms: risk ratios and	
	advanced	by EMS providers and	Nonshockable rhythms; risk ratios and 95% confidence intervals of 1-month	
	airway.	successful placement of		
		advanced airway device	survival for advanced airway placement as	
		for those who received	compared to no advanced airway	
		an advanced airway,	placement:	
		interval between	 1.12 (1.00–1.27) between 0 and 5 	
			minutes	
		initiation of	 1.34 (1.25–1.44) between 5 and 10 	
		EMS CPR and first shock	minutes	
		delivery by EMS	 1.39 (1.26–1.54) between 10 and 15 	
		providers for those with	minutes	
		shockable rhythms,	 1.20 (0.99–1.45) between 15 and 20 	
		interval between	minutes	
		initiation of EMS CPR and	 1.18 (0.80–1.73) between 20 and 25 	
		epinephrine	minutes	
		administration by EMS	 0.63 (0.29–1.38) between 25 and 30 	
		providers for those who	minutes	
		received epinephrine,	 0.44 (0.11–1.69) after 30 minutes 	
		interval between		
		initiation of EMS CPR and	Association was not seen on the outcome	
		prehospital ROSC for	of neurologically favorable survival (CPC	
		those who had	1-2) for either rhythm.	
		prehospital ROSC,		
		interval between		
		emergency call and		
		initiation of EMS CPR,		
		and interval between		
		initiation of EMS CPR		
		and hospital arrival], and		
		if the interval between		
		emergency call to		
		0 /		
		initiation of EMS was CPR		
		≥30 minutes.		

Page 20 of 89

Fukuda; 2021(24)	Aim: To determine if time to advanced airway management is associated with outcomes after OHCA. Design: Retrospective observational study using the Japanese national registry; Total N=164,223	Patient population was adult OHCA. Inclusion: age ≥18 years, OHCA who underwent advanced airway management by EMS in the prehospital setting. Exclusion: cardiac arrest witnessed by EMS personnel, patients for whom physicians were involved in prehospital ALS, patients who received advanced airway management before emergency call or EMS contact, patients who received advanced airway management after ROSC or hospital arrival, patients who did not receive timely in-hospital treatment (i.e., transport time > 60 min), and patients with missing, incomplete, or inconsistent data.	Each 1-minute unit increase in time from the emergency call (ie. each minute in delay) to successful advanced airway placement (with SGA, ETI, or laryngeal tube) was associated with worse neurologic outcomes (AOR for CPC 1-2 at 1-month, 0.90; 95% CI, 0.90–0.91), worse 1-month overall survival (AOR for survival at 1-month, 0.92; 95% CI, 0.92–0.93) and worse prehospital ROSC (AOR for prehospital ROSC , 0.96; 95% CI, 0.96– 0.97).	Increased time from emergency call to advanced airway placement (SGA, ETI, or laryngeal tube) resulted in decreased neurologically favorable 1-month survival, overall 1-month survival, and prehospital ROSC. Limitations: Well done observational study, using risk-set matching to avoid resuscitation time bias. Exclusion of patients not receiving AAM from the primary analysis is a limitation.
Nakagawa, 2021(25)	Aim: Evaluate the association between time to ETI placement and neurologic outcomes at 1 month. Design: Retrospective observational study using the Japanese national registry; Total N=14,969	Patient population was OHCA aged 15 years or older. Inclusion: age 15 years or older, witnessed by laypersons, ETI undertaken in the prehospital setting. Exclusion: unknown initial rhythm, missing or negative or outlying (>99 th percentile) time values.	Shockable initial rhythm (n=1,102): Each 1-minute unit increase in time from patient contact to ETI placement (ie. each minute in delay) was associated with worse neurologic outcomes (AOR for CPC 1-2 at 1-month, 0.91; 95% CI, 0.86–0.96) and ROSC (AOR for ROSC, 0.90; 95% CI, 0.87–0.93). Non-shockable initial rhythm (n=13,867): Each 1-minute unit increase in time from patient contact to ETI placement (ie. each minute in delay) was associated with worse neurologic outcomes (AOR for CPC 1-2 at 1-month, 0.92; 95% CI, 0.89–0.96) and ROSC (AOR, 0.91; 95% CI, 0.90–0.92).	Increased time from patient contact to ETI placement resulted in decreased neurologically favorable 1-month survival and ROSC. Limitations: No attempt to manage resuscitation time bias.
Benoit, 2019(26)	Aim: Identify the association between the timing of prehospital advanced airway placement and the minute to minute of achieving ROSC. Design: Observational cohort study using data from the Resuscitation Outcomes	Patient population was adult, non-traumatic OHCA (patients enrolled in PRIMED). PRIMED inclusion criteria: adults ≥18 years old with nontraumatic, OHCA being treated by EMS PRIMED exclusion criteria: incarcerated patients, pregnant patients, known DNR order, arrest due to exsanguination or severe burns, existing tracheostomy, use of mechanical CPR device other than the impedance threshold	A statistically significant negative association between the time to advanced airway placement and the hazard of ROSC was observed, such that increasing intervals between EMS arrival and airway placement were associated with decreasing probabilities of ROSC. Model results are shown in figures with continuous hazard ratios and associated 95% confidence intervals; the time from EMS arrival to advanced airway placement is presented as a continuous exposure variable.	Earlier EMS advanced airway placement is associated with increased probability of ROSC. Limitations: Excluded those who were never exposed (never received an advanced airway) opens risk of selection bias. There is also resuscitation time bias since short arrests with no advanced airway would be excluded. Strict inclusion criteria limit generalizability.

Consortiun	0	
(ROC)	the trial.	
Prehospita	l .	
Resuscitati	Additional study	
using an	inclusion: all patients	
Impedance		
Valve and	who received ETI or	
Early versu	placement of a SGA by	
Delayed	Elvis, including patients	
(PRIMED) t	enrolled during the run-	
Total N=7,	In period of the original	
Total N=7,	trial.	
	Additional study	
	-	
	exclusion: unwitnessed	
	arrests, EMS witnessed	
	arrests, and patients who	
	had an advanced airway	
	placed after ROSC.	

ETI = endotracheal intubation; SGA = supraglottic airway; OHCA = out-of-hospital cardiac arrest; EMS = emergency medical services; ROSC = return of spontaneous circulation; CPC = cerebral performance category; AAM = advanced airway management; CPR = cardiopulmonary resuscitation

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

The literature review for this question identified six observational studies and one post-hoc analysis of a randomized clinical trial.

The observational studies focused on the out-of-hospital population (only one study differed, examining arrests in the emergency department), with results that favored early advanced airway management. Outcomes, which included survival, neurologically favorable survival, and return of spontaneous circulation, all either favored earlier advanced airway or were neutral. All of these observational studies are at risk of selection bias due to limiting the inclusion criteria to those who received an advanced airway. One study performed risk set-matching, but all others did not account for resuscitation time bias.

In the post-hoc analysis using data from the randomized PART trial, timing of advanced airway placement was not associated with survival for either laryngeal tube (a type of supraglottic airway) or endotracheal tube placement.

There is not sufficient new evidence for a systematic review on the topic of this question.

References:

- 1. Cereceda-Sánchez FJ, Clar-Terradas J, Moros-Albert R, Mascaró-Galmés A, Navarro-Miró M, Molina-Mula J. [I-Gel® laryngeal mask versus bag-valve-mask in instrumental cardiopulmonary resuscitation under capnographic monitoring: Cluster-randomized pilot clinical trial]. *Aten Primaria* 2021; 53: 102062.
- 2. Malinverni S, Bartiaux M, Cavallotto F, De Longueville D, Mols P, Gorlicki J, Adnet F. Does endotracheal intubation increases chest compression fraction in out of hospital cardiac arrest: A substudy of the CAAM trial. *Resuscitation* 2019; 137: 35-40.
- Baekgaard JS, Triba MN, Brandeis M, Steinmetz J, Cohen Y, Gorlicki J, Rasmussen LS, Deltour S, Lapostolle F, Adnet F. Early-onset pneumonia following bag-mask ventilation versus endotracheal intubation during cardiopulmonary resuscitation: A substudy of the CAAM trial. *Resuscitation* 2020; 154: 12-18.
- 4. Lupton JR, Schmicker RH, Stephens S, Carlson JN, Callaway C, Herren H, Idris AH, Sopko G, Puyana JCJ, Daya MR, Wang H, Hansen M. Outcomes With the Use of Bag-Valve-Mask Ventilation During Out-

of-hospital Cardiac Arrest in the Pragmatic Airway Resuscitation Trial. *Acad Emerg Med* 2020; 27: 366-374.

- 5. Tjerkaski J, Hermansson T, Dillenbeck E, Taccone FS, Truhlar A, Forsberg S, Hollenberg J, Ringh M, Jonsson M, Svensson L, Nordberg P. Strategies of Advanced Airway Management in Out-of-Hospital Cardiac Arrest during Intra-Arrest Hypothermia: Insights from the PRINCESS Trial. J Clin Med 2022; 11.
- 6. Lee AF, Chien YC, Lee BC, Yang WS, Wang YC, Lin HY, Huang EP, Chong KM, Sun JT, Huei-Ming M, Hsieh MJ, Chiang WC. Effect of Placement of a Supraglottic Airway Device vs Endotracheal Intubation on Return of Spontaneous Circulation in Adults With Out-of-Hospital Cardiac Arrest in Taipei, Taiwan: A Cluster Randomized Clinical Trial. JAMA Netw Open 2022; 5: e2148871.
- Wang HE, Jaureguibeitia X, Aramendi E, Jarvis JL, Carlson JN, Irusta U, Alonso E, Aufderheide T, Schmicker RH, Hansen ML, Huebinger RM, Colella MR, Gordon R, Suchting R, Idris AH. Airway strategy and chest compression quality in the Pragmatic Airway Resuscitation Trial. *Resuscitation* 2021; 162: 93-98.
- Benger JR, Kirby K, Black S, Brett SJ, Clout M, Lazaroo MJ, Nolan JP, Reeves BC, Robinson M, Scott LJ, Smartt H, South A, Stokes EA, Taylor J, Thomas M, Voss S, Wordsworth S, Rogers CA. Effect of a Strategy of a Supraglottic Airway Device vs Tracheal Intubation During Out-of-Hospital Cardiac Arrest on Functional Outcome: The AIRWAYS-2 Randomized Clinical Trial. *Jama* 2018; 320: 779-791.
- 9. Wang HE, Humbert A, Nichol G, Carlson JN, Daya MR, Radecki RP, Hansen M, Callaway CW, Pedroza C. Bayesian Analysis of the Pragmatic Airway Resuscitation Trial. *Ann Emerg Med* 2019; 74: 809-817.
- Deakin CD, Nolan JP, Ji C, Fothergill RT, Quinn T, Rosser A, Lall R, Perkins GD. The effect of airway management on CPR quality in the PARAMEDIC2 randomised controlled trial. *Resuscitation* 2021; 158: 8-13.
- 11. Kluj P, Fedorczak M, Gaszyński T, Ratajczyk P. A pilot, prospective trial of IntuBrite® versus Macintosh direct laryngoscopy for paramedic endotracheal intubation in out of hospital cardiac arrest. *BMC Emerg Med* 2023; 23: 70.
- Szarpak L, Peacock FW, Rafique Z, Ladny JR, Nadolny K, Malysz M, Dabrowski M, Chirico F, Smereka J. Comparison of Vie Scope[®] and Macintosh laryngoscopes for intubation during resuscitation by paramedics wearing personal protective equipment. *Am J Emerg Med* 2022; 53: 122-126.
- 13. Kim JW, Park SO, Lee KR, Hong DY, Baek KJ, Lee YH, Lee JH, Choi PC. Video laryngoscopy vs. direct laryngoscopy: Which should be chosen for endotracheal intubation during cardiopulmonary resuscitation? A prospective randomized controlled study of experienced intubators. *Resuscitation* 2016; 105: 196-202.
- Risse J, Fischer M, Meggiolaro KM, Fariq-Spiegel K, Pabst D, Manegold R, Kill C, Fistera D. Effect of video laryngoscopy for non-trauma out-of-hospital cardiac arrest on clinical outcome: A registry-based analysis. *Resuscitation* 2023; 185: 109688.
- 15. Santou N, Ueta H, Nakagawa K, Hata K, Kusunoki S, Sadamori T, Takyu H, Tanaka H. A comparative study of Video laryngoscope vs Macintosh laryngoscope for prehospital tracheal intubation in Hiroshima, Japan. *Resusc Plus* 2023; 13: 100340.
- 16. Okamoto H, Goto T, Wong ZSY, Hagiwara Y, Watase H, Hasegawa K. Comparison of video laryngoscopy versus direct laryngoscopy for intubation in emergency department patients with cardiac arrest: A multicentre study. *Resuscitation* 2019; 136: 70-77.
- 17. Huebinger RM, Stilgenbauer H, Jarvis JL, Ostermayer DG, Schulz K, Wang HE. Video laryngoscopy for out of hospital cardiac arrest. *Resuscitation* 2021; 162: 143-148.
- 18. Bonnette AJ, Aufderheide TP, Jarvis JL, Lesnick JA, Nichol G, Carlson JN, Hansen M, Stephens SW, Colella MR, Wang HE. Bougie-assisted endotracheal intubation in the pragmatic airway resuscitation trial. *Resuscitation* 2021; 158: 215-219.

- 19. Risse J, Volberg C, Kratz T, Plöger B, Jerrentrup A, Pabst D, Kill C. Comparison of videolaryngoscopy and direct laryngoscopy by German paramedics during out-of-hospital cardiopulmonary resuscitation; an observational prospective study. *BMC Emerg Med* 2020; 20: 22.
- 20. Okubo M, Komukai S, Izawa J, Aufderheide TP, Benoit JL, Carlson JN, Daya MR, Hansen M, Idris AH, Le N, Lupton JR, Nichol G, Wang HE, Callaway CW. Association of Advanced Airway Insertion Timing and Outcomes After Out-of-Hospital Cardiac Arrest. *Ann Emerg Med* 2022; 79: 118-131.
- 21. Nakagawa K, Sagisaka R, Morioka D, Tanaka S, Takyu H, Tanaka H. The association of delayed advanced airway management and neurological outcome after out-of-hospital cardiac arrest in Japan. *Am J Emerg Med* 2022; 62: 89-95.
- 22. Daorattanachai K, Srivilaithon W, Phakawan V, Imsuwan I. Outcomes of Early versus Late Endotracheal Intubation in Patients with Initial Non-Shockable Rhythm Cardiopulmonary Arrest in the Emergency Department. *Emerg Med Int* 2021; 2021: 2112629.
- 23. Okubo M, Komukai S, Izawa J, Gibo K, Kiyohara K, Matsuyama T, Iwami T, Callaway CW, Kitamura T. Timing of Prehospital Advanced Airway Management for Adult Patients With Out-of-Hospital Cardiac Arrest: A Nationwide Cohort Study in Japan. J Am Heart Assoc 2021; 10: e021679.
- 24. Fukuda T, Ohashi-Fukuda N, Inokuchi R, Kondo Y, Sekiguchi H, Taira T, Kukita I. Association between time to advanced airway management and neurologically favourable survival during out-of-hospital cardiac arrest. *Anaesth Crit Care Pain Med* 2021; 40: 100906.
- 25. Nakagawa K, Sagisaka R, Tanaka S, Takyu H, Tanaka H. Early endotracheal intubation improves neurological outcome following witnessed out-of-hospital cardiac arrest in Japan: a population-based observational study. *Acute Med Surg* 2021; 8: e650.
- 26. Benoit JL, McMullan JT, Wang HE, Xie C, Xu P, Hart KW, Stolz U, Lindsell CJ. Timing of Advanced Airway Placement after Witnessed Out-of-Hospital Cardiac Arrest. *Prehosp Emerg Care* 2019; 23: 838-846.

Evidence Update Worksheet

CPR-related cognitive activity, consciousness, awareness and recall and its management

ALS 3004

Worksheet author(s): Rebecca L West, Jasmeet Soar, Sarah Rudd, Wolfgang Wetsch, Bernd Böttiger

[Updated search by Sarah Rudd Librarian/Information Specialist, Bristol UK].

No COIs

Task Force: ALS Date Submitted to SAC rep for peer review and approval: SAC rep:

PICOST / Research Question:

The PICOST (Population, Intervention, Comparator, Outcome, Study Designs and Timeframe)

Population: Adults in any setting with consciousness during CPR

Intervention: Sedation, analgesia, or other intervention to prevent consciousness

Comparators: No specific intervention for consciousness

Outcomes: Any clinical outcome. Arrest outcomes and psychological wellbeing post arrest

Other relevant outcomes identified from the review where included such as rescuer outcomes including, rescuer distress, and trauma.

Study Designs: Randomized controlled trials (RCTs) and non-randomized studies (non-randomized controlled trials, interrupted time series, controlled before-and-after studies, cohort studies) were all eligible for inclusion. For the purpose of the scoping review, we also included Case reports and case series, Grey literature and unpublished studies (e.g., conference abstracts, trial protocols). Articles based around the Lazarus phenomenon and cough CPR as well as narrative articles referring to near death experiences and consciousness were excluded but noted for discussion.

Timeframe: All languages were included providing an English title or abstract was given. Search between 26 January 2020 up to 21 September 2023

Year of last full review: 2021

Published scoping review:

West RL, Otto Q, Drennan IR, Rudd S, Böttiger BW, Parnia S, Soar J. CPR-related cognitive activity, consciousness, awareness and recall, and its management: A scoping review. Resusc Plus. 2022 May 9;10:100241. doi: 10.1016/j.resplu.2022.100241. PMID: 35586308; PMCID: PMC9108988.

Current ILCOR Consensus on Science and Treatment Recommendation for this PICOST:

CoSTR 2021 summary:

'This is a new topic, and there is insufficient evidence to warrant progressing to a Systems Review of interventions for CPR-induced consciousness. Given the interest in this topic, the task force considered the available evidence and made the following good practice statements: In settings in which it is feasible, rescuers may consider using sedative or analgesic drugs (or both) in very small doses to prevent pain and distress to patients who are conscious during CPR (good practice statement). Neuromuscular-blocking drugs alone should not be given to conscious patients (good practice statement). The optimal drug regimen for sedation and analgesia during CPR is uncertain. Regimens can be based on those used in critically ill patients and according to local protocols (good practice statement).'

Current Search Strategy: CPR terms: Awareness; Consciousness; Recall

Search used in previous review:

'We searched Medline, Embase, EMcare and CINAHL (via EBSCO) from inception to 26 Nov 2020 with a repeat search conducted on 21 October 2021. Search filters were used to limit to adults and humans. We also screened reference lists of included papers. Grey literature (including local protocols) was identified by asking ILCOR colleagues to share articles, no specific separate additional search for grey literature was conducted.'

(((("awareness" [MeSH Terms] OR "awareness" [All Fields]) AND ("cardiopulmonary resuscitation" [MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation" [All Fields]) OR "cardiopulmonary resuscitation"[All Fields] OR "cpr"[All Fields])) OR ("awareness"[MeSH Terms] OR "awareness" [All Fields])) OR (("awareness" [MeSH Terms] OR "awareness" [All Fields]) AND ("cardiopulmonary resuscitation" [MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation"[All Fields]) OR "cardiopulmonary resuscitation" [All Fields]))) AND (((("heart massage" [MeSH Terms] OR ("heart" [All Fields] AND "massage" [All Fields]) OR "heart massage" [All Fields]) OR (("heart" [MeSH Terms] OR "heart" [All Fields] OR "cardiac" [All Fields]) AND compression[All Fields])) OR (("heart arrest"[MeSH Terms] OR ("heart"[All Fields] AND "arrest" [All Fields]) OR "heart arrest" [(All Fields]) OR ("cardiopulmonary resuscitation"[MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation" [All Fields]) OR "cardiopulmonary resuscitation" [II Fields] OR "cpr"[All Fields]))) OR ("cardiopulmonary resuscitation"[MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation" [All Fields]) OR "cardiopulmonary resuscitation"[All Fields])).

New updated search strategy:

CPR terms; Awareness; Consciousness; Recall

(((("awareness" [MeSH Terms] OR "awareness" [All Fields]) AND ("cardiopulmonary resuscitation" [MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation" [All Fields]) OR "cardiopulmonary resuscitation"[All Fields] OR "cpr" [All Fields])) OR ("awareness" [MeSH Terms] OR "awareness" [All Fields])) OR (("awareness" [MeSH Terms] OR "awareness" [All Fields]) AND ("cardiopulmonary resuscitation" [MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation"[All Fields]) OR "cardiopulmonary resuscitation" [All Fields]))) AND (((("heart massage" [MeSH Terms] OR ("heart" [All Fields] AND "massage" [All Fields]) OR "heart massage" [All Fields]) OR (("heart" [MeSH Terms] OR "heart" [All Fields] OR "cardiac" [All Fields]) AND compression[All Fields])) OR (("heart arrest" [MeSH Terms] OR ("heart" [All Fields] AND "arrest" [All Fields]) OR "heart arrest" [(All Fields]) OR ("cardiopulmonary resuscitation"[MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation" [All Fields]) OR "cardiopulmonary resuscitation" [II Fields] OR "cpr" [All Fields]))) OR ("cardiopulmonary resuscitation"[MeSH Terms] OR ("cardiopulmonary" [All Fields] AND "resuscitation" [All Fields]) OR "cardiopulmonary resuscitation"[All Fields])).

Database searched: Medline, Embase, CINAHL **Time Frame:** All years and all languages were included as long as there is an English abstract

Time Frame: (new PICOST) – New literature from the 26/1/2020 to present Date Search Completed: 21/09/2023.

Search Results: 747 returned, 594 after duplicates, 19 relevant studies identified, 4 excluded due to being a part of the previous scoping review.

15 new papers since the previous scoping review were identified (these 15 included the 2021 CoSTR summary³ paper). One further expert guideline paper was identified during reading of papers¹⁵.

Summary of Evidence Update:

Relevant Guidelines or Systematic Reviews (n=4):

Organization (if relevant); Author; Year Published Dąbrowski (2023) ¹ . Analgesic use in patients during cardiopulmonary resuscitation.	Guideline or systematic review Rapid review	Topic addressed or PICO(S)T 1.How often does the return of consciousness occur during CPR? 2.What is the incidence of chest injuries in patients during CPR? 3.What painkillers and sedatives are used to improve treatment?	No. of articles identified 32	Key findings Only a small number of studies made it difficult to assess prevalence. More studies dealing with chest trauma during resuscitation, but no study considered use of analgesia. No standardized therapeutic approach for the use of analgesia / sedatives however local protocols exists.	Treatment recommendations
West (2022) ² . CPR-related cognitive activity, consciousness, awareness and recall, and its management: A scoping review [A summary of this Scop Rev is included in the 2021 ILCOR Summary CoSTR publication] ³	Scoping Review	Care of patients who are conscious or aware during CPR.	8 observatio nal studies and 26 case reports	Two types of cogitative awareness identified: 1)Visible signs of consciousness, 2)perception of lucidity. Prevalence varied between 0.23-0.9% of resuscitation with 48-59% of rescuers reporting some experience of it . CPRIC was associated with professional rescuers, shock-able rhythm, witnessed arrest and held a higher incidence of ROSC and survival to discharge. Few studies on the use of analgesia / sedation but it use did not appear to reduce development in PTSD in survivors.	Little evidence but ILCOR good practice released: In settings in which it is feasible, rescuers may consider using sedative or analgesic drugs (or both) in very small doses to prevent pain and distress to patients who are conscious during CPR (good practice statement). Neuromuscular- blocking drugs alone should not be given to conscious patients (good practice statement). The optimal drug regimen for sedation and

					analgesia during CPR is uncertain. Regimens can be based on those used in critically ill patients and according to local protocols.
Howard (2022) ⁴ . Pre-hospital guidelines for CPR induced consciousness: Scoping review.	Scoping review	Identify prehospital CPRIC guidelines and compare them, highlighting common pharmacological management trends, and discuss the factors that might impact CPRIC guidelines, and the management trends identified.	23 pre- hospital guidelines and 1 good practice statement	20 different ways to treat CPRIC identified. Midazolam most frequently used (61%), with doses varying from 1mg - 2.5md IV (2mg - 10mg IM) followed by Ketamine (48%) in doses varying from 10mg - 200mg IV and Fentanyl (39%)in doses varying from 25mcg - 100mcg IV.	Recommendation that future research be focused on development of a consensus management statement.
Parnia (2022) ⁵ . Guidelines and standards for the study of death and recalled experiences of death—a multidisciplinary consensus statement and proposed future direction:	Guideline	Establish current knowledge regarding death, consciousness and the recalled experience of death (RED)and to propose an appropriate definition and framework for the study of RED.	NA	Many different experiences currently labelled under the term near death experiences. New classification suggests reported experiences must include 6 components: relation with death, sense of transcendence, ineffability, positive transformative effects, severity of illness that leads to LOC, absence of other coma related experiences. These new experienced are proposed to be called RED - Recalled experience of death. RED is defined as a specific cognitive experience occurring during a period of LOC in relation to a life-threatening	The literature that cites NDEs can now be divided into the following 3 categories:(1) classical - original experience described in 1975. (2) authentic - classical NDE but with the addition of newer categories and themes that have been discovered since 1975 and (3) mislabelled NDEs - heterogeneous group of experiences that have no relation to death or life- threatening illness but have also been labelled NDE. The term RED should be used instead of NDE in relation to the study of

		event, including	experiences in
		cardiac arrest	relation to death

RCT: No RCTs were identified

Nonrandomized Trials, Observational Studies (n=5):

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Jaffe (2021) ⁶ . Psychological outcomes and awareness during CPR in cardiac arrest survivors.	Case control study N=116	Cardiac arrest survivors form Cardiac arrest registry or from NYU Langone medical center (New York)	GAD-7, PHQ-9 and SSS PTSD used to assess psychological outcomes. CPRIC assessed using reported memories and awareness. Assessment of timeline then made. Cardiac arrest survivors with awareness showed higher rates of sever to moderate depression than those without awareness (50% Vs 30.6% P=0.049) and higher rates of PTSD (43.2% Vs 27.8% P=0.107) but no difference in sever anxiety.	Cardiac arrest survivors may experience depression, anxiety and PTSD. Mechanism is unclear, but there may be a relationship between memories / awareness and negative psychological outcomes.
Gregory (2021) ⁷ An exploration of UK paramedics' experiences of cardiopulmonary resuscitation induced consciousness.	Mixed method, cross sectional survey N=293	Paramedics registered with HPCP and working in the UK at the time of the survey.	57% stated witnessing CPRIC. 50% of those cases witnessed CPRIC was said to have interfered with resuscitation on first experience of it but fell to 31% by the third experience of it. Most common reasons for interference were patient resisting clinical interventions, increased rhythm and pulse checks, distress, confusion and reluctance to perform CPR.	CPRIC incidence similar to other studies. Interference may be related to clinician exposure rather than any specific characteristic.
Carty (2022) ⁸ . Pre-hospital practitioner awareness and	Cross sectional study	Emergency medical technicians, Paramedics, advanced paramedics	93% of respondents involved in at least one OHCA. 57% of those admitted to witnessing	Many practitioners had personal experience with CPRIC with a wide range of reported manifestations. In some cases it

experience of CPR induced consciousness.	N=232 responding to survey N=7 interviewed		CPRIC. Most common initial rhythm was VF or pulseless VT. 65% of those who had witnessed CPRIC stated compression were interrupted at least once due to CPRIC. 88% of cases showing signs of CPRIC transported to ED and 63% of those had achieved ROSC.	resulted in interruptions to CPR. There was an apparent link between CPRIC and higher levels of ROSC. The study shows the need for CPRIC educational support for practitioners. The use of ketamine, midazolam and fentanyl are used by some organizations but there is no evidence to suggest risk or benefit.
Sterz (2023) ⁹ Lapses of the heart	Prospective controlled study N=126	All patients admitted to Department of Emergency Medicine of the Medical University of Vienna due to CA, whose communicative abilities were restored and who agreed to participate in the study.	76% responded that their impressions during cardiac arrest were nothing or blackout. 20 (16%) gave a detailed account of resuscitation. 5 (4%) scored 7 or more on the Greyson NDE scale. 11 of the 20 had their resuscitation started within 1 minute of arrest.	Reported CPRIC was of high significance to patients that experienced it, and many changed their views on life and death.
Parnia (2023) ¹⁰ AWAreness during resuscitation II	Multi centre prospective N- =567 and cross- sectional N= 126	Prospective study: In hospital cardiac arrests during 2010- 2015 during 9:00-17:00 Mon - Friday. Inclusion: >=18, In hospital cardiac arrests lasting >=5 minutes. Exclusion: out of hospital cardiac arrests. Cross sectional: Cardiac arrest survivors identified by public database. Inclusion: >=18, cardiac arrest self- reported cognitive experiences.	Primary outcome: visual or auditory awareness From the prospective study: 37.6% of participants achieved ROSC, (53) 9.3% survived to discharge, 28/53 completed the interview. 11 (39%) if those reported memories and / or perceptions of the cardiac arrest. 6 (21%) had transcendent experiences using the NDE scale. No reports of external signs of consciousness. 4 themes occurred: Post emergence from coma during CPR (CPRIC) (7%), in post resuscitation period (7%), dream/dream like experiences (11%), recalled experience of death (21%)	People undergoing cardiac arrest may have awareness, cognitive experiences and consciousness despite absent outwards signs of consciousness. The study reinforces the need to study psychological outcomes in cardiac arrest survivors and supports the idea that PTSD / other negative psychological outcomes may be associated with cardiac arrest emergence form consciousness.

	From the cross sectional study: Themes the same as above plus a 5 th - delusions.
	Of the 28 survivors with the combined tablet / headphones no body describe explicit recall or the images and auditory stimuli. 1 (3.5%) correctly identified the correct fruit from the auditory stimuli alone.
	Interpretable EEG was obtained from 53 subjects. Absence of cortical brain activity dominant (47%) but seizure like activity (5%) also emerged. Near normal / physiological EEG was also demonstrated. This declined after 50 minutes of CPR.

Case studies, grey literature (n=5):

<u>Study Acronym;</u> <u>Author;</u> Year Published	Article Type, Demographics	Key observations	Summary / conclusion
Woollacott (2021) ¹¹ Verified account of near-death experience in a physician who survived cardiac arrest	Case Study 58 year old F	Cardiac arrest under general anaesthetic. Describes hearing the anaesthetist shouting, a stillness in the chest, beeping from the cardiac monitors. Her experiences post arrest were assessed using the NDE scale, with a score of 23/32 . 6 perceptions she held in relation to the cardiac arrest were verified by the team post event.	Near death experiences / awareness during CPR can have a huge impact / change in the patient's beliefs and spirituality. Suggesting that near death experiences are a gateway to higher or expanded awareness.
Czerwonka (2021) ¹²	Case Study 49 year old	VF arrest, immediate CPR by 2 nearby doctors. During CPR the	Rapid reaction by qualified rescuers aided in the resuscitation success and
Not a normal resuscitation with ventricular fibrillation-		patient showed eye opening, purposeful movements, eye	the likelihood of CPRIC. Although there are recommendations on sedation after

Awareness during cardiopulmonary resuscitation		tracking, biting on laryngoscopy and verbal expressions, giving him a technical GCS 11. 15mg of Midazolam and 2 lots of 0.6mg of Fentanyl was given due to the suspected CPRIC. After Amiodarone, adrenaline and defibrillation ROSC was gained. A diagnosis of STEMI with full occlusion of the RCA was made in hospital, 2 stent were inserted and he discharged 11 days later	ROSC this vary, and recommendations / guidance on sedation during the resuscitation are scarce and there are no RCTs on the subject. The patient had no recollection of events, but it is uncertain whether this was due to induced amnesia with midazolam or possible reduced cerebral perfusion. However it is recognized that this is a traumatic situation for both patient and rescuers and debriefing / psychological support should be offered to rescuers and also form part of the rescue and treatment chain
Martial (2022) ¹³ Studying death and near-death experiences requires neuroscientific expertise	Commentary	The paper by Parnia contains inaccurate statements bordering on a misunderstanding of the brain death concept. People who experience NDEs are inherently people who have not been dead and have not met brain death criteria which opposes Parnia's paper. There is no evidence to suggest NDEs from cardiac arrests differ from other life threatening conditions as stated in the paper. Important studies regarding what happens in the dying brain have been omitted in Parnia's paper.	Near death research merits a framework but the guidelines and standards paper by Parnia ⁵ does not contribute to the scientific understand of near death experiences and the dying process and shows a lack of neuroscientific understanding
Wilson (2023) ¹⁴ Some people are aware during CPR	New Scientist article	References to AWARE II study: awareness rate of 39%. After 40 minutes of CPR, almost half of the people had brainwaves that appeared nearly normal.	One clinician suggested the findings suggest doctors should give more consideration to sedating people undergoing CPR. However, a second sedatives could lower the chances of a successful resuscitation and that there is not enough evidence yet.
Howard (2023) ¹⁵	Guideline	Expert guideline based on Delphi process	Definition of CPRIC is consciousness with no spontaneous circulation, can be interfering with CPR efforts (eg, pushing rescuers away, pulling out cannula) or non-interfering. Suggests drug treatments (eg, low dose ketamine) and longer resuscitation attempt (≥ 45 minutes)
Silvestri (2023) ¹⁶	Scoping review protocol	This paper recognizes the lack of current consensus guidelines and sets out the framework for a scoping review of the pre- hospital evidence which will be carried out in the near future.	

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

There remains insufficient evidence to conduct a systematic review on this topic as there are no interventional studies.

There is a small amount of new data since our previous scoping review. In our opinion, there is insufficient new information to justify another scoping review at this time. The 2021 Good Practice Statements remain valid:

- In settings in which it is feasible, rescuers may consider using sedative or analgesic drugs (or both) in very small doses to prevent pain and distress to patients who are conscious during CPR (good practice statement).
- Neuromuscular-blocking drugs alone should not be given to conscious patients (good practice statement).
- The optimal drug regimen for sedation and analgesia during CPR is uncertain. Regimens can be based on those used in critically ill patients and according to local protocols (good practice statement).

References

- Dąbrowski S, Lange S, Basiński A. Analgesic Use in Patients during Cardio-Pulmonary Resuscitation. Int J Environ Res Public Health. 2023 Feb 18;20(4):3654. doi: 10.3390/ijerph20043654. PMID: 36834346.
- West RL, Otto Q, Drennan IR, Rudd S, Böttiger BW, Parnia S, Soar J. CPR-related cognitive activity, consciousness, awareness and recall, and its management: A scoping review. Resusc Plus. 2022 May 9;10:100241. doi: 10.1016/j.resplu.2022.100241. PMID: 35586308.
- 3. Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji F, Andersen LW, Avis SR, Aziz K, Bendall JC, Berry DC, Borra V, Böttiger BW, Bradley R, Bray JE, Breckwoldt J, Carlson JN, Cassan P, Castrén M, Chang WT, Charlton NP, Cheng A, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Davis PG, de Almeida MF, de Caen AR, de Paiva EF, Deakin CD, Djärv T, Douma MJ, Drennan IR, Duff JP, Eastwood KJ, El-Naggar W, Epstein JL, Escalante R, Fabres JG, Fawke J, Finn JC, Foglia EE, Folke F, Freeman K, Gilfoyle E, Goolsby CA, Grove A, Guinsburg R, Hatanaka T, Hazinski MF, Heriot GS, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hung KKC, Hsu CH, Ikeyama T, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lockey AS, Malta Hansen C, Markenson D, Matsuyama T, McKinlay CJD, Mehrabian A, Merchant RM, Meyran D, Morley PT, Morrison LJ, Nation KJ, Nemeth M, Neumar RW, Nicholson T, Niermeyer S, Nikolaou N, Nishiyama C, O'Neil BJ, Orkin AM, Osemeke O, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reynolds JC, Ristagno G, Roehr CC, Sakamoto T, Sandroni C, Sawyer T, Schmölzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Smyth MA, Soll RF, Sugiura T, Taylor-Phillips S, Trevisanuto D, Vaillancourt C, Wang TL, Weiner GM, Welsford M, Wigginton J, Wyllie JP, Yeung J, Nolan JP, Berg KM; Collaborators. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. Circulation. 2022 Mar;145(9):e645-e721. doi:

10.1161/CIR.000000000001017. Epub 2021 Nov 11. Erratum in: Circulation. 2022 Mar;145(9):e760. PMID: 34813356.

4. Howard J, Lipscombe C, Beovich B, Shepherd M, Grusd E, Nudell NG, Rice D, Olaussen A. Pre-hospital guidelines for CPR-Induced Consciousness (CPRIC): A scoping review. Resusc Plus. 2022 Nov 28;12:100335. doi:

<u>10.1016/j.resplu.2022.100335</u>. PMID: 36465817.

- Parnia S, Post SG, Lee MT, Lyubomirsky S, Aufderheide TP, Deakin CD, Greyson B, Long J, Gonzales AM, Huppert EL, Dickinson A, Mayer S, Locicero B, Levin J, Bossis A, Worthington E, Fenwick P, Shirazi TK. Guidelines and standards for the study of death and recalled experiences of death--a multidisciplinary consensus statement and proposed future directions. Ann N Y Acad Sci. 2022 May;1511(1):5-21. doi: 10.1111/nyas.14740. Epub 2022 Feb 18. PMID: 35181885.
- Jaffe I, Shirazi TK, Gonzales A, Parnia S. Psychological outcomes and awareness during CPR in cardiac arrest survivors. Chest 2021; 160 (4, supplement): A1119. <u>https://doi.org/10.1016/j.chest.2021.07.1028</u>
- Gregory P, Mays B, Kilner T, Sudron C. An exploration of UK paramedics' experiences of cardiopulmonary resuscitation-induced consciousness. Br Paramed J. 2021 Mar 1;5(4):9-17. <u>doi: 10.29045/14784726.2021.3.5.4.9</u>. PMID: 34421371; PMCID: PMC8341066.
- Carty N Bury G. Prehospital practitioner awareness and experience of CPR-induced consciousness. Journal of Paramedic Practice 2022; 14 (9): 358-364) <u>https://doi.org/10.12968/jpar.2022.14.9.358</u>
- Sterz F, Berger ML, Ruzicka G, Beisteiner R. Lapses of the Heart: Frequency and Subjective Salience of Impressions Reported by Patients after Cardiac Arrest. J Clin Med. 2023 Mar 2;12(5):1968. doi: 10.3390/jcm12051968. PMID: 36902754; PMCID: PMC10004426.
- Parnia S, Keshavarz Shirazi T, Patel J, Tran L, Sinha N, O'Neill C, Roellke E, Mengotto A, Findlay S, McBrine M, Spiegel R, Tarpey T, Huppert E, Jaffe I, Gonzales AM, Xu J, Koopman E, Perkins GD, Vuylsteke A, Bloom BM, Jarman H, Nam Tong H, Chan L, Lyaker M, Thomas M, Velchev V, Cairns CB, Sharma R, Kulstad E, Scherer E, O'Keeffe T, Foroozesh M, Abe O, Ogedegbe C, Girgis A, Pradhan D, Deakin CD. AWAreness during REsuscitation II: A multi-center study of consciousness and awareness in cardiac arrest. Resuscitation. 2023 Oct;191:109903. doi: 10.1016/j.resuscitation.2023.109903. Epub 2023 Jul 7. PMID: 37423492.
- Woollacott M, Peyton B. Verified account of near-death experience in a physician who survived cardiac arrest. Explore (NY).
 2021 May-Jun;17(3):213-219. doi: 10.1016/j.explore.2020.03.005. Epub 2020 Mar 19. PMID: 32245708.
- Czerwonka H, Sroka M. A "Not Normal" Resuscitation with Ventricular Fibrillation Awareness During Cardiopulmonary Resuscitation. Notarzt 2021; 37: 25–29. DOI: 10.1055/a-1224-4073
- Martial C, Gosseries O, Cassol H, Kondziella D. Studying death and near-death experiences requires neuroscientific expertise. Ann N Y Acad Sci. 2022 Nov;1517(1):11-14. <u>doi: 10.1111/nyas.14888</u>. Epub 2022 Aug 26. PMID: 36017883.
- 14. Wilson C. Some people are aware during CPR. New Scientist 2023; 259 (3449) 8.
- Howard J, Grusd E, Rice D, et al. Development of an international prehospital CPR-induced consciousness guideline: A Delphi study. *Paramedicine*. 2023;0(0). doi:10.1177/27536386231215608
- Silvestri L, Soh R, Newton A, Pearce J. CPR-induced consciousness (CPR-IC) out-of-hospital care: a scoping review protocol. International Paramedic Practice 2023; 13: 8-13. doi: 10.12968/ippr.2023.13.2.8.

Evidence Update Worksheet

Asthma in Cardiac Arrest ALS 3408

Worksheet author(s): Kate Berg Task Force: ALS Date Submitted to SAC rep for peer review and approval: SAC rep: Eric Lavonas

PICOST / Research Question: In adult cardiac arrest due to asthma, does any modification of treatment, as opposed to standard care (according to treatment algorithm), improve outcome?

Year of last full review: full review 2010, EvUp 2021

Current ILCOR Consensus on Science and Treatment Recommendation for this PICOST: There are no RCTs that specifically evaluate or compare adjuvant treatment with standard treatment for cardiac arrest in asthmatic patients. Most of the literature comprises case reports and case series.

Evidence from 3 non–cardiac arrest case series involving 35 patients suggests that asthmatic patients are at risk for gas trapping during cardiac arrest, especially if their lungs are ventilated with high tidal volumes and/or rapid rates (LOE 5). One volunteer adult study demonstrated that increasing PEEP caused increased transthoracic impedance (LOE 5).

Seven case series involving 37 patients suggested increased ease of ventilation and ROSC with lateral chest compressions at the base of the ribs (LOE 4). In a single case report, lateral chest compressions were associated with cardiac arrest and poor cardiac output (LOE 4). Three single case reports (2 intraoperative and 1 ED) involving cardiac arrest caused by asthma suggested improvement in ease of ventilation and ROSC with thoracotomy and manual lung compression (LOE 4).

Treatment Recommendation (2010)

There is insufficient evidence to suggest any routine change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by asthma.

Current Search Strategy (for an existing PICOST) included in the attached approved PICOST

("asthma"[MeSH Terms] OR "asthma"[All Fields] OR "asthmas"[All Fields] OR "asthma s"[All Fields]) AND ("heart arrest"[MeSH Terms] OR ("heart"[All Fields] AND "arrest"[All Fields]) OR "heart arrest"[All Fields] OR ("cardiac"[All Fields] AND "arrest"[All Fields]) OR "cardiac arrest"[All Fields])

New Search strategy: (for a new PICOST should be outlined here as per Evidence Update Process)

Database searched: PubMed

Time Frame: Jan 1, 2021-April 11 2023

Date Search Completed: April 11, 2023

Search Results (Number of articles identified and number identified as relevant): 43 found; 1 2021 ERC guidelines paper included. No observational studies and no RCTs identified.

Summary of Evidence Update:

Relevant Guidelines or Systematic Reviews

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
		Cardiac arrest	19	Patients with	Administer high
European	Guidelines	from asthma or	observational	severe asthma	concentration oxygen.
Resuscitation	2021: Cardiac	COPD	studies, 0	exacerbations	
Council	arrest in		RCTs	have been found	Ventilate with respiratory
	special			to have very high	rate (8_10 min_1) and
	circumstances ¹			airway	sufficient tidal volume to
				pressures,	cause the chest to rise.
				suggesting high	
				risk of gastric	Intubate the trachea if
				insufflation with	able to do so safely.
				mask ventilation,	
				so early	Check for signs of tension
				intubation	pneumothorax and treat
				suggested; early	accordingly.
				attention to	
				hypoxemia and	Disconnect from positive
				airway	pressure ventilation if
				sstablishment	relevant and apply
				suggested;	pressure to manually
				checking or signs	reduce hyper-inflation.
				of tension	
				pneumothorax	Consider IV fluids.
				suggested;	
				disconnect from	Consider E-CPR in
				positive pressure	accordance with local
				ventilation and	protocols if initial
				use manual	resuscitation efforts are
				pressure to	unsuccessful.
				deflate if severe	
				air trapping suspected; case	
				reports of ECPR	
				being successful	
				were noted	
				were noted	

DCT	
RUI	

Study Acronym;	Aim of Study;	Patient	Study	Endpoint Results	Relevant 2°
Author;	Study Type;	Population	Intervention	(Absolute Event	Endpoint (if any);
Year Published	Study Size (N)		(# patients) /	Rates, P value; OR	Study Limitations;
			Study	or RR; & 95% Cl)	Adverse Events
			Comparator		
			(# patients)		
	Study Aim:	Inclusion Criteria:	Intervention:	<u>1° endpoint:</u>	Study Limitations:
	Study Type:		Comparison:		

Nonrandomized Trials, Observational Studies

Study Acronym;	Study	Patient	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;	Population	Results (include P value;	Comment(s)
Year Published	Study Size (N)		OR or RR; & 95% Cl)	
	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	

Reviewer Comments: No new studies identified. The ERC guidelines from 2021 include guidance for cardiac arrest in the setting of asthma exacerbation, but these are based on very limited evidence, mostly from studies included in prior reviews. There is insufficient new evidence to warrant a new systematic review.

Reference list:

1. Carsten Lott, Anatolij Truhlář, Annette Alfonzo, Alessandro Barelli, Violeta González-Salvado, Jochen Hinkelbein, Jerry P Nolan, Peter Paal, Gavin D Perkins, Karl-Christian Thies, Joyce Yeung, David A Zideman, Jasmeet Soar; ERC Special Circumstances Writing Group Collaborators. European Resuscitation Council

Evidence Update Worksheet

Antiarrhythmics during and after cardiac arrest ALS 3201, 3514

Worksheet author(s): Alexandra Rose GOSLING, Shinichiro OHSHIMO, Peter KUDENCHUK, Jasmeet SOAR

Task Force: ALS Date Submitted to SAC rep for peer review and approval: 8 February 2024 Presented to ALS Task Force on 8 February 2024.

COI: JS, SO, RG - No COI. PJK - PI, Lead Investigator for ROC-ALPS (2016) and ARREST (1999) RCTs.

PICOST / Research Question:

P- Among adults in any setting (in-hospital or out-of-hospital) with cardiac arrest and a shockable rhythm at any time during cardiopulmonary resuscitation (CPR) or immediately after return of spontaneous circulation (ROSC),

I- does administration of antiarrhythmic drugs (e.g., amiodarone, lidocaine, other),

C – compared with another antiarrhythmic drug or placebo or no drug,

O - change outcomes of survival to hospital discharge with good neurological outcome, survival to hospital discharge, ROSC and recurrence of pVT/VF?

Year of last full review: (insert year where this PICOST was most recently reviewed) 2018

Current ILCOR Consensus on Science and Treatment Recommendation for this PICOST:

Treatment recommendations

We suggest the use of amiodarone or lidocaine in adults with shock refractory VF/pVT (weak recommendation, low-quality evidence).

We suggest against the routine use of magnesium in adults with shock-refractory VF/pVT (weak recommendation, very low-quality evidence).

The confidence in effect estimates is currently too low to support an ALS Task Force recommendation about the use of bretylium, nifekalant, or sotalol in the treatment of adults in cardiac arrest with shock-refractory VF/pVT.

The confidence in effect estimates is currently too low to support an ALS Task Force recommendation about the use of prophylactic antiarrhythmic drugs immediately after ROSC in adults with VF/pVT cardiac arrest.

Current Search Strategy (for an existing PICOST) included in the attached approved PICOST

New Search strategy: (for a new PICOST should be outlined here as per Evidence Update Process) Database searched: Medline, Embase

PubMed search 1 Jan 2017 to 14 July 2023: 930 titles

(("Heart Arrest"[Mesh] OR heart arrest[tiab] OR cardiac arrest[tiab] OR sudden cardiac death[tiab] OR cardiovascular arrest[tiab] OR cardiopulmonary arrest[tiab] OR cardiopulmonary failure[tiab] OR "Resuscitation"[Mesh] OR resuscitation[tiab] OR "Cardiopulmonary Resuscitation"[Mesh] OR cardiopulmonary resuscitation[tiab] OR cpr[tiab] OR code blue[tiab] OR code 99[tiab] OR "Advanced Cardiac Life Support"[Mesh] OR advanced cardiac life support[tiab] OR acls[tiab] OR pulseless electrical activity[tiab] OR "Ventricular Fibrillation"[Mesh] OR ventricular fibrillation[tiab] OR asystole[tiab] OR pulseless ventricular tachycardia[tiab] OR in-hospital cardiac arrest[tiab]) AND ("Anti-Arrhythmia Agents"[Mesh] OR amiodarone[tiab] OR lidocaine[tiab] OR procainamide[tiab] OR Nifekalant[tiab] OR bretylium[tiab] OR magnesium[tiab] OR esmolol[tiab] OR sotalol[tiab])) AND (("2017/01/01"[Date - Publication] : "3000"[Date -Publication])) Sort by: Most Recent

EMBASE search 1 Jan 2017 to 14 July 2023: 753 titles

((((((((((((('heart'/exp OR heart) AND ('arrest'/exp OR arrest) OR 'cardiac'/exp OR cardiac) AND ('arrest'/exp OR arrest) OR sudden) AND ('cardiac'/exp OR cardiac) AND ('death'/exp OR death) OR 'cardiovascular'/exp OR cardiovascular) AND ('arrest'/exp OR arrest) OR cardiopulmonary) AND ('arrest'/exp OR arrest) OR cardiopulmonary) AND ('arrest'/exp OR arrest) OR cardiopulmonary) AND ('failure'/exp OR failure) OR 'resuscitation'/exp OR resuscitation OR cardiopulmonary) AND ('resuscitation'/exp OR resuscitation) OR cpr OR 'code'/exp OR code) AND ('blue'/exp OR blue) OR 'code'/exp OR code) AND ('life'/exp OR life) AND ('support'/exp OR support) OR acls OR pulseless)
AND electrical AND ('activity'/exp OR activity) OR ventricular) AND ('fibrillation'/exp OR fibrillation) OR 'asystole'/exp OR asystole OR pulseless) AND ventricular AND ('tachycardia'/exp OR tachycardia) OR 'in hospital') AND ('cardiac'/exp OR cardiac) AND ('arrest'/exp OR arrest) AND ('anti arrhythmia' AND agents OR 'amiodarone'/exp OR amiodarone OR 'lidocaine'/exp OR bretylium'/exp OR bretylium OR 'magnesium'/exp OR magnesium OR 'esmolol'/exp OR procainamide OR nifekalant OR 'bretylium'/exp OR bretylium OR 'magnesium'/exp OR magnesium OR 'esmolol'/exp OR esmolol OR 'sotalol'/exp OR sotalol OR lignocaine OR 'lignocaine'/exp OR phenytoin OR 'phenytoin'/exp OR metoprolol OR 'metoprolol'/exp AND [2017-2023]/py

Search Results (Number of articles identified and number identified as relevant):

930 PubMed titles 753 Embase titles

47 relevant articles identified (45 PubMed, 2 Embase):21 Guidelines/systematic reviews6 Secondary analyses of ROC ALPS RCT20 Non-RCTs

Summary of Evidence Update:

Relevant Guidelines or Systematic Reviews

Organization (if	Guideline or	Торіс	Nu	mber of	Ке	y findings	Treatment
relevant);	systematic	addressed or	art	ticles			recommendations
Author;	review	PICO(S)T	ide	entified			
Year Published							
		Amiodarone and	l/or	Lidocaine (p	olus	others)	
Wang Q et al.	Meta-analysis	Population: CA	•	9 studies	•	Amiodarone	Amiodarone and lidocaine
Comparison the		patients		(10,980		(OR 2.28,	are superior to placebo in
efficacy of		Intervention:		patients)		95% Crl 1.61-	discharge rates for cardiac
amiodarone		IV amiodarone	•	5 RCTs, 4		3.27) and	arrest patients.
and lidocaine		or lidocaine or		non-RCTs		lidocaine (OR	Amiodarone should be
for cardiac		amiodarone	•	8		1.53 <i>,</i> 95% Crl	listed as first line drug for
arrest: A		combined		valuated		1.05-2.25)	cardiac arrest.
network meta-		lidocaine or		survival		superior to	
analysis		placebo		to		placebo re	
Medicine		Outcome:		hospital		survival to	
(Baltimore).		survival to		admissio		hospital	
2023 Apr		hospital		n/24h		admission/2	
14;102(15):e33		discharge,	•	9 studies		4h	
195		survival to		evaluate	•	Amiodarone	
		hospital		d survival		(OR 2.19,	
		admission/24h,		to		95% Crl	
		favorable		hospital		1.54–3.14)	
		neurological		discharge		and lidocaine	
		outcome	•	4 studies		(OR 1.58,	
		Study design:		reported		95% Crl	
		RCTs and		favourabl		1.09–2.32)	
		retrospective		е		was superior	
		studies		neurologi		to placebo re	
				cal		survival to	
				outcome.		discharge	
			•	6 studies	٠	Amiodarone	
				reported		(OR 2.43,	
				the dose		95% Crl	
				of		1.61–3.68)	
				amiodaro		and lidocaine	
				ne (150–		(OR 1.62,	
				300 mg)		95% Crl	
			3 s	tudies		1.04–2.53)	
			rep	ported the		was superior	
			do	se of		to placebo re	
			lid	ocaine		favourable	
			(60) mg or		neurological	
			1.5	5 mg/kg)		outcome	

Organization (if relevant); Author; Year Published	Guideline or systematic review	Topic addressed or PICO(S)T	Number of articles identified	Key findings	Treatment recommendations
Zeppenfeld K et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death Eur Heart J 2022 Oct 21;43(40):3997- 4126	ESC Guideline 2022	Antiarrhythmic drugs	1155 referenced articles	 Isoprotereno I infusion, verapamil or quinidine for acute treatment of an electrical storm or recurrent ICD discharges should be considered in idiopathic VF (2a) Quinidine should be considered for chronic therapy to suppress an electrical storm or recurrent ICD discharges in idiopathic VF (2a) Isoprotereno I infusion should be considered for recurrent VF (2a) Isoprotereno I infusion should be considered for recurrent VF in ERS patients (2a) Quinidine in addition to an ICD should be 	quinidine, amiodarone, beta blockers recommended in management of electrical storm and recurrent VF, but should be guided by underlying pathology.

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				considered	
				for recurrent	
				VF in ERS	
				patients (2a)	
				Isoprotereno	
				l may be	
				considered	
				in SQTS	
				patients with	
				an electrical	
				storm (2b)	
				• IV	
				amiodarone	
				treatment	
				should be	
				considered	
				for patients	
				with	
				recurrent	
				PVT/VF	
				during the	
				acute phase	
				of ACS (2a)	
				Antiarrhyth	
				mic therapy	
				with beta-	
				blockers in	
				combination	
				with IV	
				amiodarone	
				is	
				recommend	
				ed in	
				patients with	
				SHD and	
				electrical	
				storm unless	
				contraindicat	
				ed (B)	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published				N/1 · 11 1	
				IV beta blocker	
				treatment is	
				indicated for	
				patients with	
				recurrent	
				PVT/VF during STEMI unless	
				contraindicated (B)	
Ono K et al.	Japanese			Sections IX and X	Equivalent 2a
JCS/JHRS 2020	Circulation			address VF and	recommendations for
Guideline on	Society			cardiac arrest.	Nifekalant and
Pharmacothera	Guidelines				Amiodarone, 2 b for
py of Cardiac					lidocaine, 3 for Mg.
Arrhythmias. J					Consider Beta blocker or
Arrhythm. 2022					Stellate ganglion block in
25;38(6):833-					persistent VF. 2 b
973.					recommendation for
					lidocaine or beta blocker
					after ROSC
Srisurapanont K	Systematic	Atraumatic	• 18 RCTs	Norepinephri	No medication was
et al.	review and	OHCA with	(6,582	ne was the	associated with
Comparing	network meta-	refractory VF	patients)	only drug to	improved survival to
Drugs for Out-	analysis	or pVT in	12	show a	hospital discharge
of-hospital,		patients > 8	medications	significant	from OH refractory
Shock-		years old	used:	improvemen	VF/pVT cardiac arrest.
refractory		where at least	magnesium	t in ROSC	Norepinephrine
Cardiac Arrest:		one study	(2 RCTs),	(OR 8.91	associated with
Systematic		group received	buffer (1	95% CI 1.88-	improved ROSC
Review and		a medication	RCT),	42.29)	Amiodarone was
Network Meta-		and reported	amiodarone	Amiodarone	associated with an
analysis of		on	(4 RCTs),	improved	increased likelihood of
Randomized		ROSC, survival	nifekalant (1	survival to	survival to hospital
Controlled Trials		to hospital	RCT),	hospital	admission
West J Emerg		admission or	lidocaine (5	admission (OR	
Med. 2021 Jul		discharge or	RCTs).	1.53 95% CI	
19;22(4):834-		neurological	bretylium (2	1.01-2.32)	
841		outcome.	RCTs),		
			epinephrine		
			(9 RCTs),		

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			vasopressin		
			(2 RCTs),		
			sotalol (1		
			RCT),		
			norepinephri		
			ne (1 RCT),		
			methoxamin		
			e (1 RCT) and		
			placebo (6		
			RCTs)		
Zhao H et al.	Bayesian	•	• 9	• Head-	In head-to-head
Amiodarone	network meta-	Primary	studies	to-head studies	studies lido and amio
and/or	analysis –	endpoint	(10,972		significantly better than
lidocaine for	studies from	survival to	patients)	Survival to	placebo in survival to
cardiac arrest:	inception to	discharge	meeting	hospital	hospital discharge;
Bayesian	1/21/2020	• Second	criteria: Dx	admission/24h –	amiodarone more
network meta-	evaluating	ary endpoints	refractory	8 studies:	effective than placebo in
analysis. Am J	survival to	survival to	VF/VT	•	favorable neurological
Emerg Med	discharge,	hospital	cardiac arrest	Lidocaine (Lido	outcome; lido and
2020;38:2185-	survival to	admission/24 h	(in and out of	OR 3.12 (95% CI)	amiodarone individually
93	hospital	and favorable	hospital), age	1.08, 9.98)) and	more effective than lido
	admission/24	neurological	≥18 yrs,	amiodarone	plus amio in survival to
	h and	outcome	assessed	(Amio OR 2.96	hospital admission/24h
	favorable	•	amiodarone,	(95% CI) (1.02,	Amiodarone and
	neurological	Amiodarone,	lido,	8.53)) each	lidocaine are superior to
	outcome	lidocaine,	amio+lido or	individually	the combination of the
		placebo and	placebo and	better vs	two drugs in admission
		combinations	full text	combination of	rates and superior to
		of same	articles	the two drugs	placebo in discharge rates.
			• Inclu	• NSD	The probability
			ded 4 RCTs, 4	between	analysis revealed that
			RS	amiodarone vs	lidocaine is the most
			(retrospectiv	lidocaine (Amio	effective agent for
			e studies)	OR 0.95 95% CI	hospital admission and
			and 1 PS	(0.67,1.34))	survival to discharger.
			(prospective	NSD	Regarding
			study).	Amio vs placebo	favorable neurological
			Coch	(Amio OR 1.34	outcome, amiodarone is
			rane bias risk	95% CI (0.95,	superior to placebo.
			assessment	1.90))	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			& Newcastle-	NSD	The probability
			Ottawa scale	Lidocaine vs	analysis revealed that
			used to	placebo (Lido OR	amiodarone was superior
			access	1.42 95% CI	to lidocaine and placebo
			quality of	(0.97, 2.06))	in neurological outcome.
			RCT &	• NSD	
			observational	Amiodarone plus	
			studies	lidocaine vs	
			• Prim	placebo	
			ary endpoint	(Amio+Lido OR	
			survival to	0.45 95% Cl	
			hospital	(0.15, 2.35))	
			discharge;		
			secondary	Survival to	
			endpoints	discharge -9	
			survival to	studies:	
			hospital	Amio vs	
			admission/24	placebo (Amio	
			h and	OR 1.18 95% CI	
			favorable	(1.03, 1.35))	
			neurological	 Lido vs 	
			outcome	placebo (Lido	
			(modified	OR 1.22 95% CI	
			Rankin scale	(1.06, 1.41))	
			0-3)	• NSD	
			• Baye	Amio vs amio	
			sian network	plus lidocaine	
			meta-	(Amio OR 2.25	
			analysis	95% CI (0.93,	
			performed	5.44)	
			Poole	• NSD	
			d outcome	Amio vs	
			measures	lidocaine (Amio	
			determined	OR 0.96	
			using random effects model	(0.86,1.07))	
			enects model	• NSD	
				Amio plus lido vs	
				lido (Amio+lido	
				OR 0.43	
				(0.18,1.03))	

Organization (if relevant); Author;	Guideline or systematic review	Topic addressed or PICO(S)T	Number of articles identified	Key findings	Treatment recommendations
Year Published					
				• NSD	
				Amio plus lido vs	
				placebo	
				(Amio+lido OR	
				0.52 (0.21,	
				1.27)).	
				Favorable	
				neurological	
				survival - 4	
				studies:	
				Amio vs	
				placebo (Amio	
				OR 1.2 95% CI	
				(1.02,1.41))	
				NSD	
				amio vs lidocaine	
				(Amio OR 1.09	
				(0.92, 1.29))	
				NSD	
				Lido vs placebo	
				Lido OR 1.1	
				(0.93,1.30))	
				• Markov	
				chain Monte	
				Carlo modeling	
				(MCMC) was	
				used to estimate	
				relative ranking	
				probability of	
				treatments –	
				lidocaine was	
				most effective	
				for survival to	
				hospital	
				admission and	
				discharge;	
				amiodarone as	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				most effective	
				for favorable	
				neuro outcome	
				• These	
				findings are	
				different from	
				those of 2	
				previous meta-	
				analyses. One of	
				these - a	
				conventional	
				meta-analysis -	
				concluded that	
				amiodarone and	
				lidocaine had the	
				same beneficial	
				effect on survival	
				to hospital	
				admission, and	
				both were better	
				than placebo. It	
				also concluded	
				that there was	
				no significant	
				difference	
				among the three	
				interventions in	
				survival to	
				hospital	
				discharge. The	
				second study – a	
				network meta-	
				analysis -	
				concluded that	
				lidocaine had the	
				best effect in	
				survival to	
				hospital	
				discharge, with	
				no significant	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				difference in	
				survival to	
				hospital	
				admission.	
				• In a	
				retrospective	
				study comparing	
				amiodarone with	
				lidocaine	
				(without a	
				placebo	
				comparison) we	
				performed a	
				Bayesian	
				network meta-	
				analysis to	
				obtain more	
				evidence. The	
				proportions of	
				patients	
				surviving to	
				hospital	
				admission and	
				discharge were	
				not different	
				between	
				patients who	
				received	
				lidocaine,	
				amiodarone, or a	
				combination of	
				the two drugs.	
				However, the	
				combination	
				regimen was the	
				least effective in	
				our study, even	
				less effective	
				than placebo.	
				This may be	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				because only	
				one study with	
				41 patients	
				was included.	
				Another reason	
				may be that	
				amiodarone and	
				lidocaine have	
				different	
				pharmacological	
				mechanisms,	
				and the	
				combination	
				of the two drugs	
				could increase	
				side effects and	
				inhibit the	
				sinoatrial and	
				atrioventricular	
				nodes.	
Ludwin K et al.	Systematic	•	•	• An	No statistically
Effect of	review and	Amiodarone vs	Studies were	insignificantly	significant survival benefit
amiodarone	meta-analysis	lidocaine	included if	higher number	of resuscitation with
and lidocaine			they met the	of cases with	amiodarone compared
on shock-			following	return of	with lidocaine.
refractory			criteria: 1)	spontaneous	
cardiac arrest:			randomized	circulation was	
A systematic			and quasi-	observed in the	
review and			randomized	amiodarone	
meta-analysis.			controlled	group compared	
Kardiol Pol			trials, cohort	with the	
2020;78:999-			and	lidocaine group	
1007			cross-section	(OR, 1.03; 95%	
			al	CI, 0.87–1.21; P =	
			studies; 2)	0.75).	
			intravascular	• A similar	
			access;	relationship was	
			3)	observed for	
			comparison	survival to	
			of	hospital	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			amiodarone	discharge (OR,	
			and placebo,	1.12; 95% Cl,	
			lidocaine	0.92–1.38; P =	
			and placebo,	0.26), as well as	
			or	survival with	
			amiodarone	favorable	
			and	neurological	
			lidocaine;	outcome (OR,	
			4) reporting	1.11; 95% Cl,	
			at least	0.89, 1.39; P =	
			return of	0.35).	
			spontaneous		
			circulation		
			(ROSC)		
			outcome; 5)		
			adult		
			patients		
			with cardiac		
			arrest		
			• 682		
			unique		
			references \rightarrow		
			8 selected		
			• 1°		
			outcome of		
			this		
			systematic		
			review was		
			ROSC.		
			• 2°		
			outcome was		
			survival to		
			hospital		
			discharge		
			and survival		
			to hospital		
			discharge		
			with		
			favorable		
			neurological		

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			outcome.		
			Favorable		
			neurological		
			outcome was		
			defined as		
			the patient		
			discharged		
			home or for		
			rehabilitation		
			, Cerebral		
			Performance		
			Categories		
			Scale score		
			of 1 or 2, or a		
			modified		
			Rankin Scale		
			score of 1 or		
			2		
			• 8		
			studies		
			selected (5		
			retrospective		
			observational		
			and 3		
			randomized)		
			but authors		
			mistook Daya		
			IV vs IO ALPS		
			substudy as		
			updated		
			ALPS for the		
			main ALPS		
			analysis		
				-	
Ali MU, et al.	Systematic	P: shockable	14 RCTs and	For the critical	The high level evidence
Effectiveness of	review and	cardiac	17	outcomes of	supporting the use of
antiarrhythmic	meta-analysis	arrest in adults	observationa	survival to	antiarrhythmic drugs
drugs for	(Medline,		l studies	hospital	during CPR for shockable
shockable	Embase, and	antiarrhythmic		discharge and	cardiac arrest is limited
cardiac arrest: A		drugs		discharge with	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
systematic	Cochrane	C: other		good	and showed no benefit for
review.	Library)	antiarrhythmic		neurological	critical outcomes.
Resuscitation		drugs or		function, none of	
2018:132:63-72		placebo		the anti-	Original ILCOR SR.
		O: survival to		arrhythmic drugs	
		hospital		showed any	
		discharge;		difference in	
		discharge with		effect compared	
		good		with placebo, or	
		neurological		with other anti-	
		function; ROSC		arrhythmic	
		T: from		drugs.	
		inception to			
		August 15,		For the outcome	
		2017		of return of	
				spontaneous	
				circulation, the	
				results showed a	
				significant	
				increase for	
				lidocaine	
				compared with	
				placebo	
				(RR = 1.16; 95%	
				CI, 1.03–1.29,	
				p = 0.01).	
Chowdhury A et	Systematic	P: adult cardiac	31 studies	For any	There has been no
al.	review and	arrests (OHCA	(13 RCTs; 7	outcome,	conclusive evidence that
Antiarrhythmics	meta-analysis	and IHCA, over	prospective	amiodarone,	any antiarrhythmic agents
in Cardiac	(CINAHL,	18 yo)	cohort	lidocaine and	improve rates of ROSC,
Arrest: A	SCOPUS,	1: 8	studies; 11	magnesium	survival to admission,
Systematic	PubMed, Web	antiarrhythmic	retrospective	showed no	survival to discharge or
Review and	of Science,	drugs	cohort	significant effect	neurological outcomes.
Meta-Analysis.	Medline(Ovid)	(amiodarone,	studies; n=	either against	
Heart Lung Circ	and the	lidocaine,	42,808)	placebo or each	
2018;27:280-	Cochrane	magnesium,		other.	
290	Clinical Trials	esmolol,		Fair DOCC	
	Registry)	nifekalant,		For ROSC,	
		bretylium,		esmolol showed	
		vasopressin,		a near significant	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
		sotalol)		increase (OR =	
		C: other		17.59; 95%Cl =	
		antiarrhythmic		0.87–356.81; p =	
		drugs or		0.06).	
		placebo			
		O: ROSC;		For survival to	
		survival to		admission,	
		hospital		bretylium	
		admission for		showed a	
		OHCA patients,		significant	
		survival to		benefit	
		hospital		compared to	
		discharge;		placebo (OR =	
		neurologic		4.04; 95%Cl =	
		outcomes at		1.22–13.43; p =	
		discharge		0.02; Figure 3)	
		T: from			
		inception to		For survival to	
		March, 2017		admission,	
				nifekalant	
				showed a	
				significant	
				increase	
				compared to	
				lidocaine (OR =	
				2.91; 95%Cl =	
				1.44–5.87; 12 =	
				34%; p = 0.003).	
				On sensitivity	
				analysis, both	
				amiodarone and	
				lidocaine had a	
				significant	
				increase in	
				survival to	
				admission, with	
				no effect on	
				survival to	
	<u> </u>			discharge.	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
McLeod SL et al.	Systematic	P: adult	8 RCTs	For ROSC,	Amiodarone and lidocaine
Comparative	review and	patients	(n=4,464)	lidocaine was	were the only agents
effectiveness of	network meta-	experiencing	()	associated with a	associated with improved
antiarrhythmics	analysis	out-of-hospital		significant	survival to hospital
for out-of-	(Medline,	cardiac arrest		increase in ROSC	admission.
hospital cardiac	Embase, and	(OHCA).		compared to	For the outcomes most
arrest: A	Cochrane	1: 5		placebo (1.15;	important to patients,
systematic	Library)	antiarrhythmic		95% CI: 1.03-	survival to hospital
review and	,,	drugs		1.28), and was	discharge and
network meta-		C: other		also superior to	neurologically intact
analysis.		antiarrhythmic		bretylium (1.61;	survival, no
Resuscitation		drugs or		95% CI: 1.00-	antiarrhythmic was
2017:121:90-97		placebo		2.60).	convincingly superior to
		O: ROSC;			any other or to placebo.
		survival to		For survival to	,
		hospital		hospital	
		admission;		admission, both	
		survival to		amiodarone	
		hospital		(1.18; 95% CI:	
		discharge;		1.08-1.30) and	
		neurologically		lidocaine (1.18;	
		intact survival		95% CI: 1.07-	
		T: from		1.30) were	
		inception to		associated with a	
		March, 2017		significant	
				increase	
				compared to	
				placebo.	
				For survival to	
				hospital	
				discharge or	
				neurologically	
				intact survival,	
				no	
				antiarrhythmic	
				was more	
				effective than	
				placebo.	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				For any	
				outcome, no	
				antiarrhythmic	
				was convincingly	
				superior to any	
				other.	
Sato S, et al.	Systematic	P: adult	33 studies (7	For both short-	Nifekalant may be more
Meta-analysis	review and	patients with	RCTs; 6	term (OR: 1.25,	beneficial than
of the efficacies	meta-analysis	OHCA/IHCA	observationa	95% CI: 0.91–	amiodarone for both
of amiodarone	(PubMed,	and had VF or	l studies; 20	1.71) and long-	short-term and long-term
and nifekalant	Cochrane	pVT)	retrospective	term survival	survival in these
in shock-	Central	I: amiodarone	studies)	(OR: 1.00, 95%	conditions.
resistant	Register of	or nifekalant		Cl: 0.63–1.57),	
ventricular	Controlled	C: lidocaine,		amiodarone	However, the efficacy of
fibrillation and	Trials, and	placebo, or a		showed no	amiodarone in either
pulseless	Igaku Chuo	non-treatment		significant	outcome remains unclear.
ventricular	Zasshi)	antiarrhythmic		benefit	
tachycardia. Sci		drug		compared to	
Rep		O: short-term		control	
2017;7:12683.		survival		treatments.	
		(defibrillation			
		success,		For both short-	
		VF/pVT		term (OR: 3.23,	
		termination,		95% CI: 2.21–	
		return to		4.72)and long-	
		spontaneous		term survival	
		circulation,		(OR: 1.88, 95%	
		survival until		CI: 1.36–2.59),	
		admission to		nifekalant	
		the		showed a	
		hospital/intens		significant	
		ive care unit,		benefit	
		and three-hour		compared to	
		survival) and		control	
		long-term		treatments.	
		survival (30-			
		day survival, 1-		There was no	
		year survival,		significant	
		and survival		difference in	
		until discharge		short-term (OR:	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
		from hospital)		0.85, 95% CI:	
		T: from		0.63–1.15) or	
		inception to		long-term	
		December		survival (OR:	
		2016		1.25, 95% CI:	
				0.67–2.31)	
				between	
				amiodarone- and	
				nifekalant-	
				treated patients.	
Khan SU, et al.	Systematic	P: adult	11 studies (7	For survival to	We conclude that
Amiodarone,	review and	patients with	RCTs; 2	hospital	lidocaine may be the most
lidocaine,	Bayesian	OHCA/IHCA	prospective	discharge,	effective anti-arrhythmic
magnesium or	network meta-	and had VF or	observationa	lidocaine was	agent for survival to
placebo in	analysis	VT)	l studies; 2	significantly	hospital discharge in
shock refractory	(PubMed/MED	I: amiodarone,	retrospective	better than	patients with pulseless VT
ventricular	LINE, EMBASE	lidocaine, and	observationa	amiodarone (OR,	or VF.
arrhythmia: A	and Cochrane	magnesium	l studies)	2.18; 95% Cr.l.	
Bayesian	Central	C: , placebo		1.26–3.13),	
network meta-	Register of	O: survival to		MgSO4 (OR,	
analysis. Heart	Controlled	hospital		2.03; 95% Cr.I.	
Lung	Clinical Trials)	discharge,		0.74–4.82) and	
2017;46:417-		survival to		placebo (OR,	
424		hospital		2.42; 95% Cr.I.	
		admission/24 h and ROSC		1.39–3.54).	
		T: from 1981		For survival to	
		to February		hospital	
		2017		admission/24 h,	
				lidocaine was	
				significantly	
				superior to	
				placebo (OR,	
				1.68; 95% Cl,	
				1.03–2.75; P-	
				value = 0.04; I2 =	
				0).	
				For achievement	
				of ROSC,	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles	, ,	recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				lidocaine	
				showed a	
				significant	
				benefit	
				compared to	
				placebo (OR,	
				1.51; 95% Cr.I.	
				1.06–2.37), with	
				a trend favoring	
				lidocaine over	
				both	
				amiodarone (OR,	
				1.43; 95% Cr.I.	
				0.98–2.42) and	
				MgSO4 (OR,	
				1.51; 95% Cr.I.	
				0.86–2.88).	
				A sensitivity	
				analysis was	
				conducted on	
				the included	
				RCTs for OHCA	
				due to	
				ventricular	
				arrhythmia,	
				lidocaine was	
				superior to both	
				amiodarone (OR,	
				2.42; 95% Cr.I.	
				1.25–3.39) and	
				placebo (OR,	
				3.01; 95% Cr.I.	
				1.60–4.30) in	
				survival to	
				hospital	
				discharge.	
		I	Bretylium		l
AHA Part III:	1992 AHA	•	• 10	•	Bretylium is
Adult Advanced	Guideline	Bretylium	references	Bretylium	useful in treating both VF
	Surdenne	Bictylium		Dictylium	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
Cardiac Life				tosylate is a	and VT but no better than
Support JAMA				quaternary	lidocaine in direct
1992;286:2199-				ammonium	comparisons.
2241				compound used	Bretylium should
				in the treatment	not be used as a first-line
				of resistant VT	antiarrhythmic agent. This
				and VF	simplifies selection of a
				unresponsive to	therapy and precludes
				defibrillation,	potential adverse
				epinephrine, and	hemodynamic effects.
				lidocaine. Its	
				cardiovascular	
				actions are	
				complex and	
				include a release	
				of	
				catecholamines	
				initially on	
				injection,	
				followed by a	
				postganglionic	
				adrenergic	
				blocking action	
				that frequently	
				induces	
				hypotension.	
				• There	
				are data	
				documenting the	
				primary	
				antifibrillatory	
				effect of	
				bretylium in	
				animals,	
				although this	
				concept has	
				recently been	
				challenged.	

Organization (if relevant); Author; Year Published	Guideline or systematic review	Topic addressed or PICO(S)T	Number of articles identified	Key findings	Treatment recommendations
AHA Part 6: Advanced cardiovascular life support; Section 5: Pharmacology I: Agents for Arrhythmias. Circulation 2000;102:I-112- 28.	AHA Guideline	• Bretyli um	• 6 references cited	 AHA has dropped reference to bretylium because of tis limited utility and availability. In 1999 bretylium was unavailable from the manufacturer. 	• After 1999 bretylium was been removed from ACLS treatment algorithms and guidelines because of a high occurrence of side effects, the availability of safer agents at least as efficacious and the limited supply and availability of the drug.
	•	B	eta Blockers		
Miraglia D et al. Esmolol in the management of prehospital refractory ventricular fibrillation: A systematic review and meta-analysis Am J Emerg Med 2020;38:1921- 34	Systematic review and meta-analysis	• Esmolol	 3253 unique records, of which 2 observational studies were found to be in accordance with the research purpose, totaling 66 patients, of whom 33.3% (n=22) received esmolol We considered for inclusion any controlled clinical study design (randomized controlled 	Esmolol was likely associated with: An increased rate of survival to discharge (RR 2.82, 95% CI 1.01–7.93, p = 0.05) (GRADE: Very low). There was no statistical significance at the individual study level but there was modest statistical significance at the meta- analysis level Survival with favorable neurological outcome (RR 3.44, 95% CI 1.11–10.67, p =	 Effectiveness of esmolol for refractory VF/pVT remains unclear; evidence is inconclusive. We are uncertain of the effects of esmolol on any of the reported outcomes as a result of this assessment; additionally, the optimal information size was not achieved for the meta- analysis, and sequential testing on an accumulated number of participants did not surpass trial sequential monitoring boundaries. Therefore, the conclusion should be that the intervention might be beneficial, but larger sample sizes are needed as the estimates are still inconclusive At this time, there is inadequate evidence

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			trials [RCTs]	0.03) (GRADE:	to either support the use
			and	Very low).	of esmolol during
			controlled	• Return	refractory cardiac arrest
			non-	of spontaneous	or the routine use of a β -
			randomized	circulation	blocker after cardiac
			trials	(ROSC) (RR 2.63,	arrest.
			[CnRTs]), and	95% CI 1.37-	
			observationa	5.07, p = 0.004)	
			l studies	(GRADE: Very	
			(cohort	low)	
			studies and	Survival	
			case control	to intensive care	
			studies) with	unit	
			a control	(ICU)/hospital	
			group (i.e.	admission (RR	
			patients not	2.63, 95% CI	
			receiving	1.37–5.07, p =	
			esmolol)	0.004) (GRADE:	
			published in	Very low).	
			English as	• The	
			full-text	GRADE quality of	
			articles in	evidence	
			indexed	was graded as	
			journals	very low for each	
			between	outcome and as	
			January 2000	having a high risk	
			and	of confounding.	
			December	• The	
			2019 that	overall risk of	
			reported	bias within	
			survival rates	individual studies	
			and	was judged as	
			neurological	serious for both	
			outcome in	studies, with	
			adults (≥18	confounding	
			years)	bias, selection of	
			resuscitated	participants, and	
			from	measurement of	
			prehospital	outcomes being	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			cardiac arrest	the primary	
			on-scene or	sources.	
			in the	• The	
			emergency	overall risk of	
			department	bias within both	
			(ED).	studies was	
			• 1°	judged as serious	
			outcomes of	because they	
			the study	included at least	
			were survival	one category	
			to discharge	with serious risk	
			and survival	of bias.	
			with	• Both	
			favorable	studies were at	
			neurological	moderate risk of	
			outcome.	selection bias.	
			• 2°	• Both	
			outcomes	studies were at	
			included	overall low risk	
			sustained	of bias for	
			ROSC,	classification of	
			survival to	interventions	
			intensive	and deviations	
			care unit	from Intended	
			(ICU)/hospita	interventions.	
			l admission,	• One	
			survival at 30	study was at	
			days and one	moderate risk of	
			year, and	bias for missing	
			survival with	data. The other	
			favorable	study was at low	
			neurological	risk of bias for	
			outcome at	missing data.	
			30 days and	• Both	
			one year	studies were at	
				moderate risk of	
				bias for	
				measurement of	
				outcomes and	
				low risk of bias	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				for selection of	
				reported results	
				• The	
				body of evidence	
				was initially	
				classified as very	
				low quality	
				evidence (i.e.	
				permitting low	
				confidence in the	
				estimated	
				effect).	
King C et al.	Systematic	•	• 114	• Driver	Currently, there
Esmolol – a	review –	Esmolol	papers were	study (2014; 6	is insufficient evidence
novel adjunct to	synopsis of	•	found of	esmolol vs 19	in the existing literature to
ACLS algorithm?	Miraglia D et	Medline	which 83	standard ACLS)	support the regular use of
Emerg Med J	al. The	1946—March	were	showed no	esmolol in resistant
2020;37:650-51	Evolving Role	2020 using the	irrelevant, 6	differences in	cardiac arrest; additional
	of Esmolol in	OVID interface	removed as	ROSC, survival to	research is warranted to
	Management		they were	admission or to	evaluate the effects of
	of Pre-Hospital		case studies	discharge	esmolol against the best
	Refractory		or case	• Lee	current standard of care
	Ventricular		reports, 1	study (2016)	
	Fibrillation; a		was a letter	showed	
	Scoping		to the editor,	improved ROSC	
	Review. Arch		19were	and survival to	
	Academ Emerg		based on	hospital	
	Med		animal	admission (56%	
	2020;8:e15		models or	vs 16% p=0.007	
			experiments	for each) but	
			and 3 were	NSD in 30 day, 3	
			literature	month or 6	
			reviews; 2	month survival	
			papers		
			represented		
			small		
			retrospective		
			observationa		
			l series		
			studies (6		

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			esmolol vs 19		
			standard		
			ACLS and 16		
			esmolol vs 25		
			std ACLS		
			patients in		
			refractory VF		
Miraglia D et al.	Scoping review	•	•	• Driver	Current research
The Evolving		Esmolol in out-	Search	study:	shows promising results
Role of Esmolol		of-hospital	restricted to	"improved" but	on the use of esmolol as
in Management		refractory VF	English-	NSD sustained	feasible adjuvant therapy
of Pre-Hospital		vs	written	ROSC and	for refractory VF/pVT out-
Refractory		conventional	publications	survival to ICU	of- hospital cardiac arrest.
Ventricular		ACLS	Jan 2000-	admission (same	• However, there is
Fibrillation; a		• Failed	July2019	endpoints	a paucity of research and
Scoping Review.		≥ 3 defib	• 2817	(66.7% vs 31.6%,	a lack of literature to
Arch Academ		attempts, 3 mg	records \rightarrow 2	p= NSD); NSD	support this therapy.
Emerg Med		epi, 300 mg	peer-	survival to	
2020;8:e15		amiodarone	reviewed	discharge (50%	
		• Most	observational	vs 15.8%) or CPC	
		patients had	studies	≤ 2 (50% vs	
		witnessed	totalling 66	10.5%)	
		arrest,	patients (22	• Lee	
		bystander CPR	esmolol	study: improved	
		• Esmolo	recipients)	sustained ROSC	
		l administered	• Drive	and survival to	
		in ED upon	r 2014 (n=15	ICU admission	
		arrival in	\rightarrow 6 esmolol)	56.3% vs 16%	
		ongoing arrest	• Lee	(p=0.007) for	
			2016 (n=41	each; NSD	
			→ 16	survival to	
			esmolol)	discharge and	
				CPC ≤ 2 at 30, 90,	
				180 days (18.8%	
				in esmolol group	
				vs 8% control for	
				each of these	
				endpoints)	
				• This	
				scoping review	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
				erroneously	
				states that	
				sustained ROSC	
				was significantly	
				more common in	
				esmolol	
				recipients than	
				control in both	
				studies; review	
				of actual studies	
				indicates this	
				was only true in	
				the Lee study	
Long DA et al.	Clinical	• Beta	• 3	• Based	Results of this
Does B-	synopsis of:	blockade in	studies	on GRADE	meta-analysis suggest that
Blockade for	Gottlieb M,	refractory	(n=115): 2	certainty of	b-blockade in patients
treatment of	Dyer S, Peksa	VF/pulseless	performed in	evidence low to	with cardiac arrest caused
refractory	Α.	VT	ED and 1	very low	by refractory ventricular
ventricular	Betablockade	•	unspecified		fibrillation or pulseless
fibrillation	for the	Refractory	location; 1	Pooled data	ventricular tachycardia
improve	treatment of	VF/VT defined	study	meta-analysis	may lead to increased
outcomes? Ann	cardiac arrest	as refractory to	prospective	results:	rates of return of
Emerg Med	due to	≥ 3 shocks, or	and	•	spontaneous circulation,
2020;76:42-45	ventricular	electrical storm	observational	Temporary ROSC	survival to discharge, and
	fibrillation or	(≥ 4	;2	(n=66) 86.5%	survival
	pulseless	episodes/hr or	retrospective	(BB) vs 31.8%	with a favorable
	ventricular	≥20 episodes	observational	(OR 14.46 95% CI	neurologic
	tachycardia: a	VF/VT qd)	•	(3.63,57.57))	outcome
	systematic	•	Esmolol,	•	• Given the paucity
	review and	Esmolol,	propranolol,	Sustained ROSC	of
	meta-analysis.	propranolol,	left stellate	(n=66) 59.1% vs	studies found and
	Resuscitation.	left stellate	ganglion	22.7% (OR 5.76	included
	2020;146:118-	ganglion block	block as	95% CI	through screening of the
	25	evaluated	interventions	(1.79,18.52))	literature in this meta-
			•	•	analysis and the low
			None of	Admission	confidence of the results,
			studies	survival (n=66)	further high-quality
			assessed	59.1% vs 22.7%	clinical investigations are
			adverse	(OR 5.76 95% CI	necessary to evaluate the
			events	(1.79,18.52))	efficacy

Organization (if relevant); Author; Year Published	Guideline or systematic review	Topic addressed or PICO(S)T	Number of articles identified	Key findings	Treatment recommendations
				 Survival to discharge (n=115) 53.1% vs 10.6% (OR 7.92 95% CI (1.85,33.89)) Survival with favorable neuro outcome (n=66) 27.3% vs 9.1% (OR 4.42 95% CI (1.05,18.56)) 	of b-blockade in refractory ventricular fibrillation and pulseless ventricular tachycardia before routine ED use.
Gottlieb M, Dyer S, Peksa A. Betablockade for the treatment of cardiac arrest due to ventricular fibrillation or pulseless ventricular tachycardia: a systematic review and meta-analysis. Resuscitation. 2020;146:118- 25	Systematic review and meta-analysis	 Beta blockade in refractory VF/pulseless VT Refractory VF/VT defined as refractory to ≥ 3 shocks, or electrical storm (≥ 4 episodes/hr or ≥20 episodes VF/VT qd) Esmolol, propranolol, left stellate ganglion block evaluated 	 3 studies (n=115) 2 studies performed in ED and 1 unspecified 1 study prospective and observational ; 2 retrospective observational Esmolol, propranolol, left stellate ganglion block as interventions None of studies 	Beta-blockade was associated with: Increased rate of temporary ROSC (OR 14.46; 95% CI 3.63,57.57) Sustained ROSC (OR 5.76; 95% CI 1.79,18.52) Survival- to-admission (OR 5.76; 95% CI 1.79, 18.52), Survival- to-discharge (OR 7.92; 95% CI 1.85, 33.89) Survival with a favorable neurologic outcome (OR 4.42; 95% CI	 Beta-blockade may be associated with improved outcomes ranging from ROSC to survival with a favorable neurologic outcome. Future randomized controlled trials are needed to further evaluate this intervention in refractory VF/VT.

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
			adverse	Overall	
			events	risk of bias	
				ranged from	
				moderate-to-	
				severe, which	
				was primarily	
				influenced by	
				selection of	
				participants and	
				potential	
				confounding	
Miraglia D et al.	Comprehensiv	•	• 2	Esmolol:	Insufficient
The evolving	e literature	Outcomes of	observational	• Driver	evidence to support
role of novel	search	extracorporeal	studies on	(2014) - n=6	effects of evaluated
treatment	(systematic	membrane	esmolol	esmolol	techniques (and in
techniques in	review) of	oxygenation,		recipients –	particular esmolol) in
the	observational	esmolol,		66.7% temporary	treatment of refractory
management of	studies	double		ROSC, 66.7%	VF/pVT OHCA
patients with		sequential		sustained ROSC	
refractory		defibrillation		and admission to	
VF/pVT out-of-		and stellate		ICU, 50%	
hospital cardiac		ganglion block		survival, 50%	
arrest Am J		• This		survival with CPC	
Emerg Med		assessment		≤2	
2020;38:648-54		limited to		• Lee	
		esmolol		(2016) n=16	
		findings (2		esmolol	
		observational		recipients –	
		studies)		66.7% temporary	
				ROSC, 56.3%	
				sustained ROSC	
				and ICU	
				admission, 18.8%	
				survival; 18.8%	
				survival with CPC	
				≤2	
	Analysis of		er Antiarrhythm		. A
Sharma A et al.	Analysis of	•	•	•	Amiodarone or
Analysis of the	2018 AHA	Antiarrhythmic	Review of	Nifekalant vs	lidocaine may be useful
2018 American		drugs in	articles cited	lidocaine – NSD	

Organization (if	Guideline or	Торіс	Number of	Key findings	Treatment
relevant);	systematic	addressed or	articles		recommendations
Author;	review	PICO(S)T	identified		
Year Published					
Heart	Focused	cardiac arrest:	in 2018 AHA	in survival to	for VF/pVT unresponsive
Association	update	amiodarone,	focused	discharge	to defibrillation
Focused Update		lidocaine,	update	•	• Mg may be useful
on Advanced		nifekalant,		Bretylium vs	for polymorphic VT due to
Cardiovascular		bretylium, Mg,		lidocaine – NSD	torsade
Life Support		sotalol		in ROSC or	Role of beta
Use of				survival to	blockers uncertain
Antiarrhythmic				discharge	No proven
Drugs During				Sotalol	benefit of nifekalant,
and				vs lidocaine –	sotalol or bretylium
Immediately				NSD in ROC,	compared to existing
After Cardiac				survival to	agents
Arrest. J				discharge or	
Cardiothoracic				neurologically	
Vasc Anesth				favorable	
2020;34:537-44				survival	
				•	
				Amiodarone vs	
				lidocaine – NSD	
				in survival to	
				discharge or	
				neurologically	
				favorable	
				outcome in ALPS	
				•	
				Subsequent	
				systematic	
				review/meta-	
				analysis showed	
				improved	
				survival to	
				hospital	
				admission with	
				either lidocaine	
				or amiodarone	
				without	
				improved	
				survival	
				discharge with	
				either drug; no	

Organization (if relevant); Author; Year Published	Guideline or systematic review	Topic addressed or PICO(S)T	Number of articles identified	Key findings	Treatment recommendations
				differences in outcome between amiodarone and lidocaine for any outcome • Nifekalant vs amiodarone – no difference in hospital mortality • Insufficient evidence to support or refute beta blockers • Mg – no benefit in ROSC or survival to discharge; limited evidence in torsade based on only 2 observational studies	
Dyer S et al. Electrical storm: A focused review for the emergency physician Am J Emerg Med 2020;38:1481- 87	Descriptive review of electrical storm defined as ≥3 episodes VF/VT/ICD shocks over 24 hrs	 Antiarrhythmic drugs (amiodarone, procainamide), beta blockers (esmolol, propranolol, metoprolol), isoproterenol 	 84 referenced articles 	• Descriptive only	 Mainly a narrative review suggesting use of antiarrhythmic agent and beta blocker as treatment agents without further formal analyses

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
	<u>Study Aim:</u> Study Type:	Inclusion Criteria:	Intervention: Comparison:	<u>1° endpoint:</u>	Study Limitations:
Rahimi M et Al. Crit Care Med. 2023 Jul 1;51(7):903-912. The Effect of Time to Treatment With Antiarrhythmic Drugs on Survival and Neurological Outcomes in Shock Refractory Out-of-Hospital Cardiac Arrest	 Association of time to treatment (drug or placebo) with survival to hospital discharge and neurological outcome. Post-hoc analysis of Resuscitation Outcomes Consortium Amiodarone, Lidocaine, Placebo (ROC-ALPS) RCT n = 2994 patients 	Adults with non- traumatic OHCA and an initial rhythm of VF or pVT refractory to at least one defibrillation attempt	Randomly assigned to receive amiodarone, lidocaine or placebo	 Particular 1° outcome: survival to hospital discharge and favourable neurological status at discharge (modified Rankin ≤3). Proportion of patients who survived to hospital discharge decreased as time to drug administration increased, in amiodarone (odds ratio [OR], 0.91; 95% Cl, 0.90–0.93 per min), lidocaine (OR, 0.93; 95% Cl, 0.91–0.96), and placebo (OR, 0.91; 95% Cl, 0.90–0.93). Improved survival times 	This is a post-hoc analysis of a previous RCT, only uses proportion of original study number.

Study Acronym;	Aim of Study;	Patient	Study	Endpoint Results	Relevant 2°
Author;	Study Type;	Population	Intervention	(Absolute Event	Endpoint (if any);
Year Published	Study Size (N)		(# patients) /	Rates, P value; OR	Study Limitations;
			Study	or RR; & 95% Cl)	Adverse Events
			Comparator		
			(# patients)		
				administering	
				amiodarone at	
				any point	
				compared to	
				placebo (OR,	
				1.32; 95% CI,	
				1.05–1.65).	
				Lidocaine only	
				improved survival	
				at later time points	
				compared with	
				placebo (p = 0.048).	
Lupton JR et al.	Evaluate	Initial shockable	ALPS RCT	Patients	This is a post-
Survival by time-	effect of	rhythm (VF,	examined	receiving	hoc analysis of a
to-	time	pVT) who	effects of	amiodarone	previous RCT,
administration of	between	received	amiodarone,	(compared to	only uses
amiodarone,	EMS arrival	amiodarone,	lidocaine	placebo) had	proportion of
lidocaine, or	to drug	lidocaine or	and placebo.	increased	original study
placebo in shock-	administratio	placebo before		survival to	number.
refractory out-	n on efficacy	achieving ROSC		admission (62%	
of-hospital	of			v 48.5% p =	
cardiac arrest.	amiodarone			0.001, OR 1.76	
Acad Emerg	and lidocaine			95% CI 1.24-	
Med. 2023 Mar 4	compared to			2.5), survival to	
	placebo.			discharge	
	Post-hoc			(37.1% v 28% p	
	analysis of			= 0.021, OR	
	10-site, 55-			1.56 95% CI	
	EMS-agency			1.07-2.29) and	
	double-blind			functional	
	RCT for			survival (31.6%	
	amiodarone,			v 2.23% p =	
	lidocaine, or			0.029, OR 1.55	
	placebo in			95% CI 1.04-	
	OHCA (ALPS)			2.32)	
	n = 2802			No significant	
	patients			difference	
				between	

Study Acronym;	Aim of Study;	Patient	Study	Endpoint Results	Relevant 2°
Author;	Study Type;	Population	Intervention	(Absolute Event	Endpoint (if any);
Year Published	Study Size (N)		(# patients) /	Rates, P value; OR	Study Limitations;
			Study	or RR; & 95% CI)	Adverse Events
			Comparator		
			(# patients)		
				lidocaine <8min	
				and placebo	
				(p>0.05)	
				Amiodarone or	
				lidocaine ≥8 min	
				had no	
				significant	
				difference in	
				outcome	
				compared to	
				placebo	
				(p>0.05)	
Lane DJ et al.	To assess the	Adult patients	Randomly	Improved	This is a post-hoc
Bayesian analysis	probability of	with OHCA with	assigned to	survival with	analysis of a
of amiodarone	improved	refractory VF or	receive	amiodarone	previous RCT.
or lidocaine	survival or	pVT (all patients	amiodarone,	ranged from	
versus placebo	improved	enrolled to ALPS	lidocaine or	83% (strong	
for out-of-	neurological	RCT)	placebo	prior) to 95%	
hospital cardiac	outcome.			(weak prior)	
arrest	 Post-hoc 			compared with	
Heart. 2022 Oct	Bayesian			placebo and	
28;108(22):1777-	analysis of			from 78%	
1783.	ALPS RCT			(strong) to 90%	
	n = 3026 adult			(weak) for	
	patients enrolled			lidocaine.	
	in RCT			Probability of	
				improved	
				neurological	
				outcome from	
				amiodarone	
				ranged from	
				96% (weak) to	
				99% (strong)	
				compared with	
				placebo and from 88%	
				(weak) to 96%	
				(weak) 10 90%	

Study Acronym;	Aim of Study;	Patient	Study	Endpoint Results	Relevant 2°
Author;	Study Type;	Population	Intervention	(Absolute Event	Endpoint (if any);
Year Published	Study Size (N)	-	(# patients) /	Rates, P value; OR	Study Limitations;
			Study	or RR; & 95% Cl)	Adverse Events
			Comparator		
			(# patients)		
				(strong) for	
				lidocaine.	
				In conclusion,	
				amiodarone had	
				high probabilities of	
				improved survival	
				and neurological	
				outcome whereas	
				treatment with	
				lidocaine had a	
				more modest	
				benefit.	
Rahimi M et al. Effect of Time to Treatment With Antiarrhythmic Drugs on Return of Spontaneous Circulation in Shock-Refractory Out-of-Hospital Cardiac Arrest J Am Heart Assoc. 2022 Mar 15;11(6):e02395 8	 Evaluate effect of time to treatment (drug/placeb o administratio n) with ROSC at hospital arrival. Post-hoc analysis of ROC ALPS RCT n = 1112 patients achieved ROSC at hospital arrival (total 3026 enrolled in RCT) 	Adults with non- traumatic OHCA and an initial rhythm of VF or pVT refractory to at least one defibrillation attempt	Randomly assigned to receive amiodarone, lidocaine or placebo	 36.7% patients achieved ROSC at hospital arrival (350 amiodarone, 396 lidocaine, 366 placebo) Proportion of patients with ROSC decreased as time to medication increased: amiodarone (OR 0.92 95%CI 0.9- 0.94), lidocaine (OR 0.95 95% CI 0.93-0.96) and placebo (OR 0.95 95% CI 0.93-0.96) With shorter times to drug administration the 	This is a post-hoc analysis of a previous RCT, only uses proportion of original study number.
				administration, the proportion with	
				ROSC was higher in	

Study Acronym;	Aim of Study;	Patient	Study	Endpoint Results	Relevant 2°
Author;	Study Type;	Population	Intervention	(Absolute Event	Endpoint (if any);
Year Published	Study Size (N)		(# patients) /	Rates, P value; OR	Study Limitations;
			Study	or RR; & 95% CI)	Adverse Events
			Comparator		
			(# patients)		
			, ,	amiodarone versus	
				placebo recipients.	
Salcido DD, et al.	To investigate		I: lidocaine	Rearrest rate was	Rearrest rates did
Effects of intra-	the relationship	Patients 18 years	(n=420),	44.0% overall;	not differ between
resuscitation	between rearrest	, or older with	amiodarone	42.9% for placebo,	antiarrhythmic and
antiarrhythmic	and intra-	nontraumatic	(n=363)	45.7% for lidocaine,	, placebo treatment
administration	resuscitation	OHCA,	C: placebo	and 43.0% for	groups.
on rearrest	antiarrhythmic	documented	(n=361)	amiodarone.	
occurrence and	, drugs in the	persistent, or	O: rearrest,		ECG waveform
intra-	context of the	recurring VF/VT	survival to		characteristics were
resuscitation	Resuscitation	after ≥1 shock	hospital		correlated with
ECG	Outcomes		discharge, good		treatment group
characteristics in	Consortium		neurologic		and rearrest.
the ROC ALPS	(ROC)		function at		
trial.	amiodarone,		hospital		Rearrest was
Resuscitation	lidocaine, and		discharge (MRS		inversely associated
2018:129:6-12	placebo (ALPS)		<=3),		with survival and
	trial.		quantitative ECG		neurologic
			measures at first		outcomes.
	Pospective,		analyzable VF,		
	randomized,		immediately		
	controlled,		prior to ROSC,		
	double-blind trial		and at onset of		
	conducted from		first rearrest.		
	February 2013 to				
	January 2017				
	n=1,144				
Kudenchuk PJ, et	To evaluate the	Patients 18 years	I: lidocaine	Active-drug	Although not
al.	effectiveness of	of age or older	(n=420),	recipients in this	statistically
Antiarrhythmic	amiodarone and	with atraumatic	amiodarone	cohort required	significant, point
Drugs for	lidocaine for	out-of-hospital	(n=363)	fewer shocks,	estimates for
Nonshockable-	OHCA due to	cardiac arrest,	C: placebo	supplemental doses	survival were
Turned-	shock-resistant	established	(n=361)	of their assigned	greater after
Shockable Out-	VF/VT (The	intravenous or	O: The primary	drug, and ancillary	amiodarone or
of-Hospital	Amiodarone,	intraosseous	outcome of the	antiarrhythmic	lidocaine than
Cardiac Arrest:	Lidocaine or	vascular access,	trial was survival	drugs than	placebo, without
The ALPS Study	Placebo Study	and persistent	to hospital	recipients of a	increased risk of
(Amiodarone,	(ALPS)).	(nonterminating)	discharge.	placebo (P<0.05).	adverse effects or

Study Acronym;	Aim of Study;	Patient	Study	Endpoint Results	Relevant 2°
Author;	Study Type;	Population	Intervention	(Absolute Event	Endpoint (if any);
Year Published	Study Size (N)		(# patients) /	Rates, P value; OR	Study Limitations;
	, , ,		Study	or RR; & 95% Cl)	Adverse Events
			Comparator		
			(# patients)		
Lidocaine, or		or recurrent	Secondary		disability and
Placebo).	Prospective,	(restarting after	outcome were	In all, 16 (4.1%)	consistent with
Circulation	randomized,	successful	survival to	amiodarone, 11	previously observed
2017;136:2119-	double-blind,	termination)	discharge with	(3.1%) lidocaine,	favorable trends
2131	placebo-	VF/VT after one	favorable	and 6 (1.9%)	from treatment of
	controlled	or more shocks.	neurological	placebo-treated	initial shock-
	multicenter trial		functional	patients survived to	refractory VF/VT
	n=4,089		status, defined	hospital discharge	with these drugs.
			on the modified	(P=0.24).	
			Rankin scale as 3		
			or less, and	No significant	
			adverse drug-	interaction	
			related effects.	between treatment	
				assignment and	
				discharge survival	
				occurred with the	
				initiating OHCA	
				rhythm (asystole,	
				pulseless electric	
				activity, or VF/VT).	
				Survival in each of	
				these categories	
				was consistently	
				higher with active	
				drugs, although the	
				trends were not	
				statistically	
				significant.	
				Adjusted absolute	
				differences (95%	
				confidence interval)	
				in survival from	
				nonshockable-	
				turned-shockable	
				arrhythmias with	
				amiodarone versus	

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
				placebo were 2.3% (-0.3, 4.8), P=0.08, and for lidocaine versus placebo 1.2% (-1.1, 3.6), P=0.30.	

Nonrandomized Trials, Observational Studies

Study Acronym;	Study	Patient	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;	Population	Results (include P value;	Comment(s)
Year Published	Study Size (N)		OR or RR; & 95% Cl)	
	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	
		Amiodarone	e and/or Lidocaine	
Perry E et al.	Retrospective	• n= 2,026	 1° outcome was 	Administration of
, The impact of	cohort study	adults with	survival to hospital	amiodarone within 28
time to	, of adult	shock	discharge	minutes associated with
amiodarone	patients with	refractory	 2° outcomes: pre- 	improved ROSC and event
administration	shock	VF/pVT	hospital ROSC, event	survival outcomes and
on survival from	refractory	treated by	survival (a pulse on	increased survival to
out-of-hospital	VF/pVT using	EMS between	arrival at hospital)	hospital discharge
cardiac arrest.	Ambulance	January	Amiodarone	No documentation of
Resusc Plus.	Registry Data	2010-	administration within	neurological outcome of
2023 Jun	• n = 2,026	Decmber	28 minutes of the	patients who survived to
7;14:100405	adults with	2019	emergency call was	discharge
	VF/pVT OHCA	1,393 (68.8%)	associated with a	Excluded patients with
	Time-	received	higher likelihood of	initial defibrillation by first
	dependent	amiodarone	ROSC (≤18 minutes:	responder/public, who
	propensity	during the shock-	RR = 1.031 (95% Cl	were a higher-survival
	score	refractory	1.018–1.043) and event	cohort
	matching	VF/pVT episode,	survival (≤18 minutes:	
		all after 3	RR = 1.046 (95% CI	
		defibrillations	1.025–1.067)	
		had been	Amiodarone administration	
		administered (as	within 23 minutes of the	
			emergency call was	

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
		per EMS guidelines)	associated with increased likelihood of survival to hospital discharge (≤18 minutes: RR = 1.166 (95% CI 1.092–1.244)	
Kishihara Y et al. Comparison of the effects of lidocaine and amiodarone for out-of-hospital cardiac arrest patients with shockable rhythms: a retrospective observational study from a multicenter registry. BMC Cardiovasc Disord. 2022 Nov 5;22(1):466	 Retrospective observational propensity- matched record-review study using OHCA registry. n = 1970 adult patients with VF/pVT who were administered amiodarone or lidocaine 	 Adult cardiogenic OHCA with VF/pVT treated by EMS who received either amiodarone or lidocaine during resuscitation n = 105 administered lidocaine, 1865 amiodarone 	 1° outcome was 30-day survival 2° outcome: good neurological outcome at 30 days (CPC score 1-2) Amiodarone used as reference 30-day survival following lidocaine: OR 1.44 (95% CI 0.58-3.61) 30-day good neurological outcome following lidocaine: OR 1.77 (95% CI 0.59-5.29) 	 No significant differences in both 30-day survival or good neurological outcomes between amiodarone and lidocaine Only 5.3% patients received lidocaine, whereas 94.7% were administered amiodarone Only OHCA with cardiogenic cause included
Wissa J et al. Time to amiodarone administration and survival outcomes in refractory ventricular fibrillation Emerg Med Australas. 2021 Dec;33(6):1088- 1094	 Retrospective observational record review of ambulance service database for adult OHCA with refractory VF n = 502 patients 	Adult OHCA of medical aetiology with refractory VF treated by ambulance service & received amiodarone	 1° outcome: survived event, discharged alive, 30 day survival Time to amiodarone negatively associated with survival (OR 0.93 for event survival; 95% CI 0.89–0.97) Optimal time window for amiodarone administration is within 23 min after arrest. 	 Patients receiving amiodarone within the optimal time had significantly better survival (survived event 38.3% vs 20.6%, p< 0.001; discharge survival 25.5% vs 9.7%, p< 0.001; 30-day survival 25.1% vs 9.7%, p< 0.001) No data on neurological outcomes
Wagner D et al. Comparative Effectiveness of Amiodarone and	 Retrospective cohort study of adult patients with 	 Adult in- hospital cardiac arrest with 	 1° outcome: ROSC 2° outcomes: 24h survival, survival to hospital discharge and 	Compared with amiodarone, lidocaine is associated with statistically significant higher rates of ROSC, 24h survival,

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Lidocaine for the Treatment of In- Hospital Cardiac Arrest Chest. 2023 May;163(5):1109 -1119	in-hospital cardiac arrest with refractory VF/pVT. n = 14,630 patients	refractory VF/pVT receiving amiodarone or lidocaine. January 2000 – December 2014 68.7% (n= 10,058) treated with amiodarone 31.3% (n=4572) treated with lidocaine	favourable neurologic outcome When compared with amiodarone, lidocaine associated with statistically significant increased rates of: ROSC (OR 1.15, p=0.01), 24h survival (OR 1.16, p=0.004) survival to discharge (OR 1.19, p <0.001) and favourable neurologic outcome (OR 1.18, p<0.001)	survival to hospital discharge and favourable neurologic outcome, in patients with in- hospital cardiac arrest with refractory pVT/VF.
Lee DK et al. Impact of early intravenous amiodarone administration on neurological outcome in refractory ventricular fibrillation: Retrospective analysis of prospectively collected prehospital data. Scan J Trauma Resus Emerg Med 2019; 27: 109-117	 Retrospective analysis of prospectively collected prehospital data n=134 adults presenting with VF and nonresponsive to ≥3 shocks Patients divided into 2 groups based on CPC 1-2 vs not at hospital discharge 	 Adult OHCA due to initial VF Persisten t VF despite 3 shocks → 300 mg IV amiodarone + 150 mg if required 	 1°: Good neurological outcome at hospital discharge based on elapsed time from call-to- amiodarone (CPC 1-2) 2°: Prehospital ROSC, total ROSC, survival to admission, survival to discharge based on call-to- amiodarone administration time In univariate logistic regression, probability of good neurological outcome at hospital discharge decreased as the call-to amiodarone administration interval increased (OR 0.89 [95% CI = 0.80-0.99]) In multivariate logistic regression TTM (OR 5.86 (1.27,27.09) & call-to- amio ≤ 20 min (OR 10.12 (1.37, 74.92) independently 	 Early amiodarone administration (call-to- amiodarone administration interval ≤ 20 min) was an independent factor associated with good CPC at discharge in OHCA patients with initial VF and subsequent refr VF Notably only 15 of 134 (11%) of patients were discharged with CPR 1-2 Other system efficiencies could also account for benefit from earlier treatment (i.e. everything done sooner and more responsive substrate to any intervention)

Study Acronym;	Study	Patient	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;	Population	Results (include P value;	Comment(s)
Year Published	Study Size (N)		OR or RR; & 95% Cl)	
			associated with better	
			neurological outcome	
			• Age, sex, public	
			place, witnessed arrest,	
			bystander	
			CPR, targeted temperature	
			management (TTM), the	
			call-to-epinephrine	
			administration interval, and	
			the call-to-amiodarone	
			administration interval	
			were included in the	
			multivariable logistic	
			regression analysis	
Daya MR et al.	•	• n=3019	 1° survival to 	Effects of amiodarone
Survival after IV	Prespecified	adults with	hospital discharge	and lidocaine were
versus IO	observational	nontraumatic	 2° survival to 	significantly greater for IV than
amiodarone,	analysis of a	OHCA due to VF	hospital admission,	IO route across all outcomes
lidocaine or	randomized	randomized to	favorable neurological	and beneficial only for the IV
placebo in out-	placebo-controlled	amiodarone,	survival (modified Rankin	route
of-hospital	clinical trial	lidocaine or	scale 0-3).	Study underpowered
shock-refractory	• n=3019	placebo	 Unadjusted and 	to statistically significant
cardiac arrest.	adults with	• 2358	adjusted analyses were	interactions
Circulation	nontraumatic	received assigned	similar	
2020;141:188-	OHCA due to VF	drugs IV; 661 IO	 Adjusted analysis 	
198	randomized to		for IV administration –	
	amiodarone,		amiodarone vs placebo	
	lidocaine or		1.26 (1.06,1.50), lidocaine	
	placebo		vs placebo 1.21 (1.02,1.45);	
			for IO NSD	
			Statistically	
			significant interaction	
			between route of vascular	
			access and survival not	
			evident (p=0.32)	
			Adjusted analysis	
			for survival to hospital	
			admission, survival with	
			mRS \leq 3 all showed	
			significant benefit	

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
			amiodarone vs placebo; lidocaine vs placebo; NSD for IO	
Benz P et al. Frequency of advanced cardiac life support medication use and association with survival during in-hospital cardiac arrest. ClinTher2020;42: 121-129	 Retrospective single-center medical record review n=181 in hospital cardiac arrest events 	 Adults with in-hospital cardiac arrest between Jan 2017-March 2018 	 1° = frequency and quantity of medications used during resuscitation 2° = median time to defibrillation, frequency of bicarbonate use Use of meds: epinephrine 86.7% mean 4.2 mg; sodium bicarbonate 63.5% mean 9 grams (1.9 amps); amiodarone 30.9% mean 311.8 mg (70% of resuscitations with shockable initial rhythms). Lidocaine use surprisingly infrequent (<5% overall; 10% in shockable rhythms) Amiodarone ROSC 0.63 (0.29,1.4); survival to discharge 0.94 (0.41, 2.16) 	 Inconclusive for benefit of amiodarone on ROSC or survival to hospital discharge
Wang CH et al. Outcomes associated with amiodarone and lidocaine for the treatment of adult in hospital cardiac arrest with shock- refractory pulseless ventricular tachyarrhythmia. J Formosan Med Assoc 2020;119:327-34	 Retrospective study single medical center of patients with in- hospital cardiac arrest with VF/pVT n = 130 Multivariate logistic regression analysis included all available independent variables were considered in the regression model, regardless of 	 In- hospital adult nontraumatic cardiac arrest 2006-2015 from VF/pVT requiring > 1 shock n= 113 who received amiodarone or lidocaine during resuscitation 86.9% received amiodarone as first AA Rx (median 300 mg) 	 1° outcome termination of VF/pVT within three shocks. Termination of VF/pVT was defined as its displacement to a nonshockable rhythm (organised or asystole). 2° outcomes included sustained ROSC, survival for 24 h, survival to hospital discharge, and a favourable neurological outcome at hospital discharge. A favorable neurological status was defined as a score of 1 or 	 Amiodarone-first strategy seemed to be associated with the termination of VF/pVT using fewer shocks Other outcomes inconclusive due to small study size Study flawed in that amiodarone or lidocaine were administered after the 3rd shock – whereas primary outcome was termination within 3 shocks.

Study Acronym;	Study	Patient	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;	Population	Results (include P value;	Comment(s)
Year Published	Study Size (N)		OR or RR; & 95% Cl)	
	whether they	; 17 received	2 on the Cerebral	
	were scored as	lidocaine first	Performance Category	
	significant in the	(median 100 mg)	(CPC) scale	
	univariate		Multivariate logistic	
	analyses.		regression analyses:	
			 Amiodarone-first 	
			group experienced a higher	
			likelihood of terminating	
			the VF/pVT within three	
			shocks (odds ratio: 11.61,	
			(95% Cl 1.34,100.84); p-	
			value = 0.03), as compared	
			with the lidocaine-first	
			group	
			 No significant 	
			differences between the	
			amiodarone- and lidocaine-	
			first groups in sustained	
			return of spontaneous	
			circulation (1.03	
			(0.29,3.71), survival for 24 h	
			(0.66 (0.10,4.37), survival to	
			discharge (0.12 (0.01, 1.47),	
			or favourable neurological	
			outcomes at hospital	
			discharge (0.28 (0.02, 3.42).	
Lee BK. Effect of	•	• n= 295	• 1° VT recurrence	Prophylactic
Prophylactic	Retrospective,	hospitalized	 2° survival to 	amiodarone after successful
Amiodarone	observational	OHCA from	discharge, neurological	resuscitation from cardiac
Infusion	propensity-	shockable	outcome (CPC 1-2)	arrest with initial shockable
on the	matched record	arrhythmias +	• 50/444 patients	or subsequently occurring
Recurrence of	review study from	149 with	(11.3%) had VT recurrence	shockable rhythm was not
Ventricular	4 tertiary care	nonshockable-	most commonly during	associated with the
Arrhythmias	hospital	turned-shockable	TTM induction	prevention of recurrent
in Out-of-	prospective	arrhythmias	Recurrence of	ventricular arrhythmias during
Hospital Cardiac	databases	undergoing TTM	ventricular arrhythmia	TTM, improving survival or
Arrest Survivors:	• n= 295	• 124	significantly higher in	neurological outcome
A Propensity-	hospitalized OHCA	propensity-	prophylactic amiodarone	Likely highly biased
Matched	from shockable	matched patients	group than in non-	amiodarone treatment group
Analysis. J Clin	arrhythmias + 149	received	prophylactic amiodarone	owed to multiple risk factors,

Study Acronym;	Study	Patient	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;	Population	Results (include P value;	Comment(s)
Year Published	Study Size (N)	-	OR or RR; & 95% Cl)	
Med 2019;8:244-	with	prophylactic IV	group in multivariate	resulting in a higher VT
53	nonshockable-	amiodarone vs	(nonpropensity) analysis	recurrence rate in adjusted
	turned-shockable	320 did not	(16.9% vs. 9.1%, p = 0.02);	analyses that resolved when
	arrhythmias		no difference in survival to	propensity-adjusted.
	undergoing TTM		discharge or neurological	
	• Assess		outcome	
	effectiveness of		• 93 patients in each	
	prophylactic IV		group were propensity	
	amiodarone in		matched with NSD in VT	
	preventing		recurrence, survival or	
	ventricular		favorable neurological	
	arrhythmia		outcome	
	recurrences during			
	TTM (33 and 36°)			
Bellut H. Early	Retrospective	256 patients with	In multivariate analysis,	Early recurrence of major
recurrent	single centre	primary OHCA	treatment with	arrhythmia was observed in
arrhythmias after	study, Paris,	with VF/VT and	prophylactic anti-	more than 10% of post-cardiac
out-of-hospital	France, cardiac	coronary	arrhythmic in the ICU was	arrest patients. These events
cardiac arrest	arrest centre -	angiogram and	not associated with a	happened mostly within the
associated with	between January	admitted to ICU.	change in the risk of	first 24 h.
obstructive	2007 and	29 major	recurrence (OR 0.85 [0.21-	
coronary artery	December 2016 in	arrhythmia vs.	3.65], p = 0.82).	Too few patients to state
disease: Analysis	the 24-bed	227 without		whether prophylaxis was
of the PROCAT	medical <u>ICU</u> at	major		helpful.
registry.	Cochin University	arrhythmia. 36		
Resuscitation.	Hospital (Paris,	(14%) patients		
2019	France).	received a		
Aug;141:81-87.		prophylactic AA		
		treatment at		
		admission in the		
		ICU (which was		
		amiodarone in all		
		cases), with no		
		significant		
		difference		
		between the 2		
		groups (4/29 in		
		the major		
		arrhythmia group		

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
		vs 32/227 in controls Other Antiarrhyt	hmics or combinations	
Lian R et al. The first case series analysis on efficacy of esmolol injection for in-hospital cardiac arrest patients with refractory shockable rhythms in China Front Pharmacol. 2022 Sep 30;13:930245	 Retrospective case series analysis of adult IHCA with refractory VF/pVT treated with esmolol – no control n = 29 	 Adult IHCA with refractory shockable rhythms (VF/pVT) persisting after ≥3 defibrillation attempts, who received esmolol during CA n = 9, given esmolol ≤5 defibrillation attempts n = 20, given esmolol bolus after 5th defibrillation attempt 	 Efficacy assessment: sustained ROSC (≥20 minutes), ≥24h ROSC, ≥72h ROSC, survival to hospital discharge Sustained ROSC: 79% ≥24h ROSC: 62% ≥72h ROSC: 59% Survival to hospital discharge: 59% No statistically significant difference between those administered esmolol bolus ≤5 defibrillation attempts and those given it after >5 defibrillations, in any measured outcome 	 Success rates of sustained ROSC, 24 h ROSC, 72 h ROSC, and survival to hospital discharge were 79%, 62%, 59%, and 59%. Small study size Less benefit seen in patients with end-stage heart failure
Patrick C et al. Feasibility of prehospital esmolol for refractory ventricular fibrillation J Am Coll Emerg Physicians Open. 2022 Apr 9;3(2):e12700	 Retrospective observational analysis of esmolol for adult out-of- hospital cardiac arrest with refractory VF n = 63 with cardiac arrest and refractory VF (control) n = 70 with cardiac arrest and RVF 	Adult out-of- hospital cardiac arrest with refractory VF who received ≥3 EMS defibrillations between June 2017 and June 2020	 1° outcome: to assess 'feasibility' defined as >75% of patients meeting RVF criteria receiving prehospital esmolol 2° outcome: ROSC during EMS encounter, 24h hospital survival, survival to hospital discharge 38% patients who received esmolol achieved prehospital ROSC compared to 24% 	 87% eligible patients with cardiac arrest and refractory VF received esmolol prehospitally OR 1.99 (95% CI 0.89-4.47) of ROSC during EMS encounter for those who received esmolol, compared to those who did not. This was not statistically significant. Small sample size Lower proportion of patients received after the

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
	received single bolus 0.5mg/kg esmolol (intervention)		in the control group (p=0.09). 24h survival and survival to discharge were the same in both groups.	addition of esmolol to the protocol
Stupca K et al. Esmolol, vector change, and dose-capped epinephrine for prehospital ventricular fibrillation or pulseless ventricular tachycardia Am J Emerg Med. 2023 Feb;64:46- 50.	 Retrospective, multicentre, cohort study of prehospital cardiac arrest with refractory VF/pVT Patients receiving 'EMS bundle' – esmolol, vector change defibrillation, dose-capped epinephrine of 3mg – compared to standard ACLS care n = 83 patients 	 Prehospital cardiac arrest with VF/pVT having received ≥3 defibrillations , ≥3 epinephrine and 300mg amiodarone. n = 36, standard ACLS care n = 47, 'EMS bundle' 	 1° outcome: sustained ROSC (>20 mins without recurrence of cardiac arrest) 2° outcome: incidence of ROSC, survival to hospital arrival, survival to hospital discharge and neurologically intact survival at hospital discharge Those who received standard ACLS care achieved significantly higher rates of sustained ROSC (58.3% vs 17%, p < 0.001), any ROSC (66.7% vs 19.1%, p < 0.001), and survival to hospital arrival (55.6% vs 17%, p < 0.001) Survival to hospital discharge (16.7% vs 6.4%, p=0.17) and neurologically intact survival at hospital discharge (5.9% vs 4.3%, p=1.00) were not significantly different between groups 	 Those who received the EMS bundle achieved significantly less likely to achieve sustained ROSC or survive to hospital admission Neurologically intact survival rates were low and similar between groups
Huebinger R Time to Antiarrhythmic and Association with Return of	 Retrospective observational analysis of national EMS database 	 Adult non- traumatic cardiac arrests with initial 	 Outcomes: time to antiarrhythmic administration, ROSC Median time to initial amiodarone dose was 	Longer time to administration of antiarrhythmic associated with decreased rate of ROSC

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Spontaneous Circulation in the United States Prehosp Emerg Care. 2023;27(2):177- 183.	n = 11,939 patients	shockable rhythm and received an antiarrhythmi c • n = 9236 received amiodarone n = 1327 received lidocaine	 19.9 minutes (IQR 15.8-25.6) Median time to initial lidocaine dose was 19.5 minutes (IQR 15.2-25.4) Rate of ROSC higher for lidocaine (30.2%) than amiodarone (24.5%) Increased time to initial antiarrhythmic associated with decreased rates of ROSC for amiodarone (OR 0.9, 95% CI 0.9-0.94) and lidocaine (OR 0.9 95% CI 0.9-0.97) 	
Li DL et al. Quinidine in the Management of Recurrent Ventricular Arrhythmias: A Reappraisal JACC Clin Electrophysiol. 2021 Oct;7(10):1254- 1263.	 Retrospective analysis of single tertiary centre of patients with in-hospital recurrent sustained ventricular arrhythmias n = 37 patients 	Adult inpatients receiving first- time quinidine for recurrent sustained ventricular arrhythmias (VT and VF)	 1° outcome: first recurrence of VA, ICD shock and repeated VA ablation (and/or other procedures for VA suppression) 2° outcomes: death, orthotopic heart transplant Quinidine reduced acute VA from median of 3 episodes (IQR 2- 7.5) to 0 (IQR 0-0.5) during median 3 days before and 4 days after initiation (p < 0.001) Decreased from median 10.5 episodes/day (IQR 5-15) to 0.5 (IQR 0-4) in those with electrical storm (p=0.004) Of those discharged on quinidine, 54.2% has VA recurrence, median 138 days. 	 Quinidine can be useful as a short-term therapy in patients with recurrent VAs and structural heart disease 24.3% patients experienced adverse effects that led to drug discontinuation. Small cohort

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Funakoshi H Nifekalant versus Amiodarone for Out-Of-Hospital Cardiac Arrest with Refractory Shockable Rhythms; a Post Hoc Analysis Arch Acad Emerg Med. 2022 Jan 1;10(1):e6.	 Post-hoc analysis of nationwide, multi-centre observational study n = 1317 	 Adult OHCA with refractory VF/pVT receiving nifekalant or amiodarone after arrival to hospital June 2014- December 2017 n = 1275 received amiodarone n = 42 received nifekalant 	 1° outcome: admission after ROSC 2° outcomes: 30 day survival, 30 day favourable neurological outcome (CPC 1 or 2) For nifekalant (compared to amiodarone): admission after ROSC (-5.9%, 95% CI - 7.1 to 22.4, p =0.57), 30 day favorable neurological outcome (0.1%, 95% CI - 14 to 13.9, p=0.99, 30 day survival (-3.9%, 95% CI - 19.8 to 12, p=0.63) 	Nifekalant not associated with improved outcomes re admission after ROSC, 30 day survival or 30 day favourable neurological outcome when compared with amiodarone.
Huebinger R Procainamide for shockable rhythm cardiac arrest in the Resuscitation Outcome Consortium Am J Emerg Med. 2022 May;55:143-146	 Retrospective observational study evaluating procainamide for OHCA from the Resuscitation Outcomes Consortium n = 3087 patients 	 Adult OHCA with initial shockable rhythm and received an antiarrhythmi c from ROC Epistry 3 n = 51 procainamide n = 1776 amiodarone n = 1418 lidocaine 	 Prehospital ROSC, ROSC at ED arrival, survival to hospital discharge Compared to procainamide, amiodarone had similar prehospital ROSC (OR 0.7, 95% CI 0.3–1.8), ED ROSC (OR 0.6, 95% CI 0.3–1.3), and survival (OR 1.0, 95% CI 0.3–3.1). Lidocaine also had a similar prehospital ROSC (OR 0.9, 95% CI 0.4–2.2), ED ROSC (OR 1.2, 95% CI 0.5– 2.7), and survival (OR 1.4, 95% CI 0.5–4.0) 	While associated with increased prehospital ROSC when compared with amiodarone using multivariable regression, procainamide otherwise had similar prehospital ROSC, ED ROSC, and survival.
Viskin S et al. Quinidine- Responsive Polymorphic Ventricular Tachycardia in Patients With	• Retrospective observational study of patients with polymorphic VT and coronary	• n= 43 adults within days of uncomplicated AMI or coronary revascularization with polymorphic	 1° outcome termination of polymorphic VT/VF storm 17 of 23 patients in storm received quinidine (1200-2000 mg qd) responded vs 6 pts who 	• The specific form of polymorphic VT described (in context of recent AMI or coronary revascularization) may be responsive to quinidine.

Study Acronym; Author; Year Published	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Coronary Heart Disease. Circulation 2019;139:2304- 14.	artery disease – no control • n= 43	VT deteriorating to VF or storm who failed conventional AA Rx including amiodarone, lidocaine and Mg • n=23 had polymorphic VT/VF storm	received non-quinidine therapies (p<0.0001)	 Study non- randomized Benefit of quinidine may be limited to a specific ischemic patient group
Schupp T, et al. Prognostic impact of beta- blocker compared to combined amiodarone therapy secondary to ventricular tachyarrhythmia s. Int J Cardiol 2019:277:118- 124	A large retrospective registry analysis, propensity-score matching (before matching, n=1,354; after matching, n=372)	P: patients surviving at least one episode of ventricular tachyarrhythmias I: beta-blocker (before matching, n=1,144; after matching, n=186) C: beta-blocker with amiodarone (before matching, n=210; after matching, n=186) O: all-cause mortality T: from 2002 until 2016	BB associated with improved long-term survival compared to BB- AMIO (univariable: HR = 0.550; p = 0.001, multivariable: HR = 0.712; statistical trend, p = 0.052). After propensity-score matching, BB therapy was still associated with improved survival compared to BB-AMIO (mortality rate 18% versus 26%; log rank p = 0.042; HR = 0.634; 95% CI = 0.407- 0.988; p = 0.044). Prognostic superiority of BB was mainly observed in patients with LVEF>= 35% (HR = 0.463; 95% CI = 0.215-0.997; p = 0.049) and in those without atrial fibrillation (non-AF) (HR = 0.415; 95% CI = 0.202- 0.852; p = 0.017).	BB therapy is associated with improved secondary long- term prognosis compared to BB-AMIO in patients surviving index episodes of ventricular tachyarrhythmias.
Huang CH, et al. Acute hospital administration of	Retrospective, observational, and nationwide	P: patients with shockable cardiac arrest	Odds ratios for 1-year survival via multiple regression analysis were	In patients with shockable cardiac arrest, 1-year survival rates were improved with

Study Acronym;	Study	Patient	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;	Population	Results (include P value;	Comment(s)
Year Published	Study Size (N)		OR or RR; & 95% Cl)	
amiodarone	population-based	I: amiodarone	1.84 (95% CI: 1.58-2.13;	association of using
and/or lidocaine	cohort study,	(n=6,459),	p<0.0001) for amiodarone,	amiodarone and/or lidocaine,
in shockable	Nationwide	lidocaine	1.88 (95% CI: 1.40-2.53;	as opposed to non-treatment.
patients	registry analysis	(n=1,077),	p<0.0001) for lidocaine,	
presenting with	(Taiwan National	amiodarone with	and 2.18 (95% CI: 1.71-	Outcomes of patients given
out-of-hospital	Health Insurance	lidocaine (n=	2.77; p<0.0001) for dual	one or both medications did
cardiac arrest: A	Research	1,487)	agent use.	not differ significantly in
nationwide	Database (NHIRD))	C: placebo (non-		intergroup comparisons.
cohort study. Int		treatment.,	The dual treatment group	
J Cardiol		n=18,440)	also surpassed the other	
2017:227:292-		O: 1-year	groups in terms of survival	
298.		survival; survival	to ICU admission (34.10%)	
		to intensive care	and survival to discharge	
		unit (ICU)	(12.25%)	
		admission;		
		survival to	administration of anti-	
		discharge	arrhythmic agents during	
		T: from 2004	resuscitation increased	
		until 2011	chances of survival to ICU	
			admission and survival to	
			discharge compared with	
			non-treatment, with the	
			highest ORs seen in the	
			dual-agent (amiodarone	
			and lidocaine) group.	

Reviewer Comments: (including whether this PICOST should have a systematic or scoping review)

Despite the large number of studies, there is no compelling new data that is likely to update our existing treatment recommendations for amiodarone and lidocaine.

There is new data on beta-blockers and procainamide that would benefit from a formal systematic review.

Specifically:

1. Review of interim evidence does not provide new data that would alter previous recommendations regarding use of lidocaine and amiodarone in shock-refractory VF/Pulseless VT.

2. Confidence in effect estimates remain low to support an ALS Task Force recommendation about the use of bretylium, nifekalant, or sotalol in the treatment of adults in cardiac arrest with shock-refractory VF/pVT.

3. Use of beta blockers (esmolol, propranolol, metoprolol) for this indication was not included in the 2018 treatment recommendations and this issue warrants a more detailed systematic review.

4. While bretylium has recently re-entered the market following its discontinuation in 1999, no new evidence has since emerged from earlier studies that would change prior guideline recommendations. Those recommendations previously indicated that bretylium should not be used as a first-line antiarrhythmic agent because of a high occurrence of side effects and the availability of safer agents at least as efficacious. More study of the drug is required. (Thind M. Bretylium, a class III antiarrhythmic, returns to the market. Am J Cardiol 2020;133:77-80.)

5. Three observational studies have specifically addressed the prophylactic use of lidocaine and amiodarone following out-of-hospital cardiac arrest, and do not provide sufficient evidence to alter previous recommendations (those indicated there was insufficient evidence to support any specific recommendations).

6. There are limited data on the use of combination drugs (amiodarone and lidocaine) as compared with amiodarone or lidocaine used singly for the treatment of VF/pVT, and these do not provide sufficient evidence to support any recommendations.

7. Use of drugs such as quinidine for unique ventricular rhythm presentations and associated genetic conditions remains mainly anecdotal or based on limited case series in selected patients with insufficient evidence to support any specific recommendations.

8. Procainamide is used in some EMS systems and was not addressed in our 2018 review – this could be part of a formal systematic review.

Reference list:

[in order of appearance in tables]

- 1. Wang, 2023, e33195. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101268/
- 2. Zeppenfeld 2022, 3997-4126. <u>https://pubmed.ncbi.nlm.nih.gov/36017572/</u>
- 3. Ono, 2022, 833-973. https://pubmed.ncbi.nlm.nih.gov/36017572/
- 4. Srisurapanont, 2021, 834. https://pubmed.ncbi.nlm.nih.gov/35354019/
- 5. Zhao, 2020, 2185. <u>10.1016/j.ajem.2020.06.074</u>
- 6. Ludwin, 2020, 999. https://journals.viamedica.pl/kardiologia_polska/article/view/82673
- 7. Ali 2018, 63. <u>https://pubmed.ncbi.nlm.nih.gov/30179691/</u>
- 8. Chowdhury, 2018, 280. https://pubmed.ncbi.nlm.nih.gov/28988724/
- 9. McLeod, 2017, 90. https://pubmed.ncbi.nlm.nih.gov/29037886/
- 10. Sato, 2017, 12683. https://pubmed.ncbi.nlm.nih.gov/28978927/

11. Khan, 2017 417. https://pubmed.ncbi.nlm.nih.gov/28958592/ 12. American Heart Association, 1992, 2199. https://pubmed.ncbi.nlm.nih.gov/1404772/ 13. American Heart Association, 2000, I-112. https://pubmed.ncbi.nlm.nih.gov/10966670/ 14. Miraglia, 2020, 1921. https://pubmed.ncbi.nlm.nih.gov/32777667/ 15. King, 2020, 650. https://pubmed.ncbi.nlm.nih.gov/32978249/ 16. Miraglia, 2020,e15. https://pubmed.ncbi.nlm.nih.gov/32259114/ 17. Long, 2020,42. https://pubmed.ncbi.nlm.nih.gov/32192760/ 18. Gottlieb, 2020,118. https://pubmed.ncbi.nlm.nih.gov/31790759/ 19. Miraglia, 2020,648. https://pubmed.ncbi.nlm.nih.gov/31836341/ 20. Sharma, 2020,537. https://pubmed.ncbi.nlm.nih.gov/31097339/ 21. Dyer, 2020,1481. https://pubmed.ncbi.nlm.nih.gov/32345562/ 22. Rahimi, 2023, 903. https://pubmed.ncbi.nlm.nih.gov/37318289/ 23. Lupton, 2023, 906. https://pubmed.ncbi.nlm.nih.gov/36869657/ 24. Lane, 2022, 1777. https://pubmed.ncbi.nlm.nih.gov/35236764/ 25. Rahimi, 2022, e02395. https://pubmed.ncbi.nlm.nih.gov/35243875/ 26. Salcido, 2018, 6. https://pubmed.ncbi.nlm.nih.gov/29803703/ 27. Kudenchuk, 2017, 2119. https://pubmed.ncbi.nlm.nih.gov/28904070/ 28. Perry, 2023, 100405. https://pubmed.ncbi.nlm.nih.gov/37303855/ 29. Kishihara, 2022, 466. <u>https://pubmed.ncbi.nlm.nih.gov/36335307/</u> 30. Wissa, 2021, 1088. https://pubmed.ncbi.nlm.nih.gov/34382325/ 31. Wagner, 2023, 1109. https://pubmed.ncbi.nlm.nih.gov/36332663/ 32. Lee, 2019,109. https://pubmed.ncbi.nlm.nih.gov/31823800/ 33. Daya, 2020,188. <u>https://pubmed.ncbi.nlm.nih.gov/31941354/</u> 34. Benz, 2020,121. https://pubmed.ncbi.nlm.nih.gov/31874777/ 35. Wang, 2020,237. https://pubmed.ncbi.nlm.nih.gov/31255419/ 36. Lee, 2019,244. https://pubmed.ncbi.nlm.nih.gov/30781870/ 37. Bellut, 2019, 81. https://pubmed.ncbi.nlm.nih.gov/31185259/ 38. Lian, 2022, 930245. https://pubmed.ncbi.nlm.nih.gov/36249764/ 39. Patrick, 2022, e12700. https://pubmed.ncbi.nlm.nih.gov/35425942/ 40. Stupca, 2023, 46. https://pubmed.ncbi.nlm.nih.gov/36436299/ 41. Huebinger, 2023, 177. https://pubmed.ncbi.nlm.nih.gov/35254200/ 42. Li, 2021, 1254. https://pubmed.ncbi.nlm.nih.gov/34217656/ 43. Funakoshi, 2022, e6. https://pubmed.ncbi.nlm.nih.gov/35072095/ 44. Huebinger, 2022, 143. https://pubmed.ncbi.nlm.nih.gov/35325787/ 45. Viskin, 2019,139. <u>https://pubmed.ncbi.nlm.nih.gov/30696267/</u> 46. Schupp, 2019, 118. https://pubmed.ncbi.nlm.nih.gov/30473333/ 47. Huang, 2017, 292. https://pubmed.ncbi.nlm.nih.gov/27942569/